Computational model of neuron-astrocyte interactions during focal seizure generation

被引:40
作者
Reato, Davide [2 ]
Cammarota, Mario [1 ]
Parra, Lucas C. [2 ]
Carmignoto, Giorgio [1 ]
机构
[1] Univ Padua, Consiglio Nazl Ric, Inst Neurosci, Dept Expt Biomed Sci, Padua, Italy
[2] CUNY City Coll, Dept Biomed Engn, New York, NY 10031 USA
关键词
computational model; epilepsy; excitation/inhibition balance; neuron-astrocyte interaction; tripartite synapse; EXTRASYNAPTIC NMDA RECEPTORS; DEPENDENT GLUTAMATE RELEASE; IN-SITU RESPOND; D-SERINE; HIPPOCAMPAL ASTROCYTES; SYNAPTIC-TRANSMISSION; CALCIUM OSCILLATIONS; EPILEPTIFORM ACTIVITY; TRIPARTITE SYNAPSE; EXOCYTOTIC RELEASE;
D O I
10.3389/fncom.2012.00081
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Empirical research in the last decade revealed that astrocytes can respond to neurotransmitters with Ca2+ elevations and generate feedback signals to neurons which modulate synaptic transmission and neuronal excitability. This discovery changed our basic understanding of brain function and provided new perspectives for how astrocytes can participate not only to information processing, but also to the genesis of brain disorders, such as epilepsy. Epilepsy is a neurological disorder characterized by recurrent seizures that can arise focally at restricted areas and propagate throughout the brain. Studies in brain slice models suggest that astrocytes contribute to epileptiform activity by increasing neuronal excitability through a Ca2+-dependent release of glutamate. The underlying mechanism remains, however, unclear. In this study, we implemented a parsimonious network model of neurons and astrocytes. The model consists of excitatory and inhibitory neurons described by Izhikevich's neuron dynamics. The experimentally observed Ca2+ change in astrocytes in response to neuronal activity was modeled with linear equations. We considered that glutamate is released from astrocytes above certain intracellular Ca2+ concentrations thus providing a non-linear positive feedback signal to neurons. Propagating seizure-like ictal discharges (IDs) were reliably evoked in our computational model by repeatedly exciting a small area of the network, which replicates experimental results in a slice model of focal ID in entorhinal cortex. We found that the threshold of focal ID generation was lowered when an excitatory feedback-loop between astrocytes and neurons was included. Simulations show that astrocytes can contribute to ID generation by directly affecting the excitatory/inhibitory balance of the neuronal network. Our model can be used to obtain mechanistic insights into the distinct contributions of the different signaling pathways to the generation and propagation of focal IDs.
引用
收藏
页数:14
相关论文
共 101 条
[1]   EPILEPTIFORM BURST AFTERHYPERPOLARIZATION - CALCIUM-DEPENDENT POTASSIUM POTENTIAL IN HIPPOCAMPAL CA1-PYRAMIDAL CELLS [J].
ALGER, BE ;
NICOLL, RA .
SCIENCE, 1980, 210 (4474) :1122-1124
[2]   On the role of astrocytes in epilepsy: A functional modeling approach [J].
Amiri, Mahmood ;
Bahrami, Fariba ;
Janahmadi, Mahyar .
NEUROSCIENCE RESEARCH, 2012, 72 (02) :172-180
[3]   Tripartite synapses: glia, the unacknowledged partner [J].
Araque, A ;
Parpura, V ;
Sanzgiri, RP ;
Haydon, PG .
TRENDS IN NEUROSCIENCES, 1999, 22 (05) :208-215
[4]   SNARE protein-dependent glutamate release from astrocytes [J].
Araque, A ;
Li, NZ ;
Doyle, RT ;
Haydon, PG .
JOURNAL OF NEUROSCIENCE, 2000, 20 (02) :666-673
[5]   Intercellular calcium signaling mediated by point-source burst release of ATP [J].
Arcuino, G ;
Lin, JHC ;
Takano, T ;
Liu, C ;
Jiang, L ;
Gao, Q ;
Kang, J ;
Nedergaard, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (15) :9840-9845
[6]   Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro [J].
Avoli, M ;
D'Antuono, M ;
Louvel, J ;
Köhling, R ;
Biagini, G ;
Pumain, R ;
D'Arcangelo, G ;
Tancredi, V .
PROGRESS IN NEUROBIOLOGY, 2002, 68 (03) :167-207
[7]   Potassium model for slow (2-3 hz) in vivo neocortical paroxysmal oscillations [J].
Bazhenov, M ;
Timofeev, I ;
Steriade, M ;
Sejnowski, TJ .
JOURNAL OF NEUROPHYSIOLOGY, 2004, 92 (02) :1116-1132
[8]   Excitatory actions of GABA during development: The nature of the nurture [J].
Ben-Ari, Y .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (09) :728-739
[9]   Prostaglandins stimulate calcium-dependent glutamate release in astrocytes [J].
Bezzi, P ;
Carmignoto, G ;
Pasti, L ;
Vesce, S ;
Rossi, D ;
Rizzini, BL ;
Pozzan, T ;
Volterra, A .
NATURE, 1998, 391 (6664) :281-285
[10]   Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes [J].
Bowser, David N. ;
Khakh, Baljit S. .
JOURNAL OF GENERAL PHYSIOLOGY, 2007, 129 (06) :485-491