Microbial C:N:P stoichiometry and turnover depend on nutrients availability in soil: A 14C, 15N and 33P triple labelling study

被引:110
作者
Chen, Jie [1 ,2 ]
Seven, Jasmin [3 ]
Zilla, Thomas [3 ]
Dippold, Michaela A. [2 ]
Blagodatskaya, Evgenia [3 ,4 ]
Kuzyakov, Yakov [3 ,4 ,5 ]
机构
[1] Chinese Acad Forestry, Res Inst Trop Forestry, Guangzhou 510520, Guangdong, Peoples R China
[2] Univ Gottingen, Biogeochem Agroecosyst, Dept Crop Sci, Busgenweg 2, D-37077 Gottingen, Germany
[3] Univ Gottingen, Dept Soil Sci Temperate Ecosyst, Dept Agr Soil Sci, Busgenweg 2, D-37077 Gottingen, Germany
[4] Univ Gottingen, Agr Soil Sci, Dept Crop Sci, Busgenweg 2, D-37077 Gottingen, Germany
[5] RUDN Univ, Agrotechnol Inst, Moscow, Russia
关键词
Microbial stoichiometry; Nutrient turnover; Microbial maintenance; Phosphorus limitation; Forest soils; LIMITING BACTERIAL-GROWTH; WEIGHT ORGANIC-SUBSTANCES; FUMIGATION-EXTRACTION; BIOMASS PHOSPHORUS; FOREST FLOOR; FATTY-ACIDS; CARBON; NITROGEN; MICROORGANISMS; MATTER;
D O I
10.1016/j.soilbio.2019.01.017
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Microbial biomass turnover and the associated recycling of carbon (C-mic), nitrogen (N-mic) and phosphorus (P-mic) depend on their stoichiometric relationships and plays a pivotal role for soil fertility. This study examines the responses of C-mic, N-mic P-mic, the microbial respiration rate (CO2 efflux), and the total DNA content to C and nutrient addition in forest soils with very low (Low-P) and high P (High-P) contents. Both the Low-P and High-P soils were treated with a low and high level of C, N and P (5% and 200% of C-mic, N-mic and P-mic). Phosphorus (P-33) was added before the addition of C (C-14) and N (N-15) to investigate the potential P limitation. We hypothesized two modes of microbial biomass C and nutrient turnover: 1) maintenance through intracellular metabolisms and/or 2) microbial growth and death through necromass reutilization. In Low-P soil, the 2-day-sooner increase of C-mic and P-mic compared to the increase of CO2 efflux and DNA content after high CN input showed the rapid initial uptake of C and limiting nutrients into microbial cells. It also demonstrated a lag period before microbial growth commenced. In High-P soil, however, the CO2 efflux and DNA content increased simultaneously with increases in microbial biomass, reflecting the microbial capacity for immediate growth. Afterwards, CO2 efflux and DNA content dropped to the level before CNP addition, with a decline of C-mic and P-mic in Low-P soil and a decline of in High-P soil, suggesting a C and P limitation in Low-P soil and N limitation in High-P soil. Under low CNP addition, the microorganisms in High-P soil are ready to grow, while those in Low-P soil are mainly in maintenance mode. The microorganisms under maintenance in low-P soil can switch to growth/death mode after removing the nutrient limitation. High CNP input caused a non-homeostatic response of C-mic: N-mic: P-mic stoichiometry from 691:105:1 to 33:1:1 in Low-P soil, mainly resulting from a higher storage of the limiting elements (C and P) in microbial biomass. The ratio remained stable under low CNP addition due to the endogenous metabolism of C and nutrient at maintenance. The C and nutrient were turn-overed much faster by microorganisms in the growth/death mode, confirming a key principle of ecology: the stronger the limitation by an element, the more efficiently that element is retained within an organism, and the more intensively it is reused. The triple labeling approach linked with C-mic: N-mic: P-mic stoichiometry helped to identify the dominant maintenance and growth/death modes of microbial biomass CNP turnover in nutrient-limited and -unlimited soil.
引用
收藏
页码:206 / 216
页数:11
相关论文
共 79 条
  • [1] Rapid method of determining factors limiting bacterial growth in soil
    Aldén, L
    Demoling, F
    Bååth, E
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (04) : 1830 - 1838
  • [2] Nutrient limitations to soil microbial biomass and activity in loblolly pine forests
    Allen, AS
    Schlesinger, WH
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2004, 36 (04) : 581 - 589
  • [3] A trait-based approach for modelling microbial litter decomposition
    Allison, S. D.
    [J]. ECOLOGY LETTERS, 2012, 15 (09) : 1058 - 1070
  • [4] The importance of C, N and P as driver for bacterial community structure in German beech dominated forest soils
    Bergkemper, Fabian
    Welzl, Gerhard
    Lang, Friederike
    Krueger, Jaane
    Schloter, Michael
    Schulz, Stefanie
    [J]. JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2016, 179 (04) : 472 - 480
  • [5] Towards a conversion factor for soil microbial phosphorus
    Bilyera, Nataliya
    Blagodatskaya, Evgenia
    Yevdokimov, Ilya
    Kuzyakov, Yakov
    [J]. EUROPEAN JOURNAL OF SOIL BIOLOGY, 2018, 87 : 1 - 8
  • [6] Black C.A., 1965, CHEM MICROBIOLOGICAL, V9, P1387
  • [7] Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review
    Blagodatskaya, E.
    Kuzyakov, Y.
    [J]. BIOLOGY AND FERTILITY OF SOILS, 2008, 45 (02) : 115 - 131
  • [8] Microbial Growth and Carbon Use Efficiency in the Rhizosphere and Root-Free Soil
    Blagodatskaya, Evgenia
    Blagodatsky, Sergey
    Anderson, Traute-Heidi
    Kuzyakov, Yakov
    [J]. PLOS ONE, 2014, 9 (04):
  • [9] Active microorganisms in soil: Critical review of estimation criteria and approaches
    Blagodatskaya, Evgenia
    Kuzyakov, Yakov
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2013, 67 : 192 - 211
  • [10] Estimating the active and total soil microbial biomass by kinetic respiration analysis
    Blagodatsky, SA
    Heinemeyer, O
    Richter, J
    [J]. BIOLOGY AND FERTILITY OF SOILS, 2000, 32 (01) : 73 - 81