On the Convexification of Constrained Quadratic Optimization Problems with Indicator Variables

被引:11
作者
Wei, Linchuan [1 ]
Gomez, Andres [2 ]
Kucukyavuz, Simge [1 ]
机构
[1] Northwestern Univ, Dept Ind Engn & Management Sci, Evanston, IL USA
[2] Univ Southern Calif, Daniel J Epstein Dept Ind & Syst Engn, Los Angeles, CA USA
来源
INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2020 | 2020年 / 12125卷
基金
美国国家科学基金会;
关键词
Convexification; Perspective formulation; Indicator variables; Quadratic optimization; Combinatorial constraints; PERSPECTIVE REFORMULATIONS; STRONG FORMULATIONS; 2ND-ORDER CONE; SELECTION; INTEGER; CUTS; PROGRAMS; REPRESENTATION; RELAXATIONS; SETS;
D O I
10.1007/978-3-030-45771-6_33
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Motivated by modern regression applications, in this paper, we study the convexification of quadratic optimization problems with indicator variables and combinatorial constraints on the indicators. Unlike most of the previous work on convexification of sparse regression problems, we simultaneously consider the nonlinear objective, indicator variables, and combinatorial constraints. We prove that for a separable quadratic objective function, the perspective reformulation is ideal independent from the constraints of the problem. In contrast, while rankone relaxations cannot be strengthened by exploiting information from k-sparsity constraint for k >= 2, they can be improved for other constraints arising in inference problems with hierarchical structure or multicollinearity.
引用
收藏
页码:433 / 447
页数:15
相关论文
共 48 条
[1]   A strong conic quadratic reformulation for machine-job assignment with controllable processing times [J].
Akturk, M. Selim ;
Atamturk, Alper ;
Gurel, Sinan .
OPERATIONS RESEARCH LETTERS, 2009, 37 (03) :187-191
[2]  
Alan M., 2002, Subset selection in regression, DOI [10.1201/9781420035933, DOI 10.1201/9781420035933]
[3]   On convex relaxations for quadratically constrained quadratic programming [J].
Anstreicher, Kurt M. .
MATHEMATICAL PROGRAMMING, 2012, 136 (02) :233-251
[4]  
Atamturk A., 2018, SPARSE SMOOTH SIGNAL
[5]   Strong formulations for quadratic optimization with M-matrices and indicator variables [J].
Atamturk, Alper ;
Gomez, Andres .
MATHEMATICAL PROGRAMMING, 2018, 170 (01) :141-176
[6]  
Bacci T., 2019, OPTIMIZATION
[7]   A Conic Representation of the Convex Hull of Disjunctive Sets and Conic Cuts for Integer Second Order Cone Optimization [J].
Belotti, Pietro ;
Goez, Julio C. ;
Polik, Imre ;
Ralphs, Ted K. ;
Terlaky, Tamas .
NUMERICAL ANALYSIS AND OPTIMIZATION, NAO-III, 2015, 134 :1-35
[8]  
Bertsimas D, 2021, Arxiv, DOI arXiv:1907.02109
[9]   OR Forum-An Algorithmic Approach to Linear Regression [J].
Bertsimas, Dimitris ;
King, Angela .
OPERATIONS RESEARCH, 2016, 64 (01) :2-16
[10]   BEST SUBSET SELECTION VIA A MODERN OPTIMIZATION LENS [J].
Bertsimas, Dimitris ;
King, Angela ;
Mazumder, Rahul .
ANNALS OF STATISTICS, 2016, 44 (02) :813-852