Classification of forearm movements based on kinematic parameters using artificial neural networks

被引:0
|
作者
Novicic, Marija M. [1 ]
Jankovic, Milica M. [1 ]
Kvascev, Goran S. [1 ]
Popovic, Mirjana B. [1 ]
机构
[1] Univ Belgrade, Sch Elect Engn, Bulevar Kralja Aleksandra 73, Belgrade 11120, Serbia
来源
2017 25TH TELECOMMUNICATION FORUM (TELFOR) | 2017年
关键词
accelerometer; artificial neural network; gyroscope; forearm movement; Myo Armband; wearable technology; ORIENTATION; EMG;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Human body motion tracking has been performed in the domain of diagnosis and therapy of movement disorders, facilitating human machine interaction and controlling wearable robots. Low-cost inertial measurement units are widely used in wearable robotics for tracking of upper/lower limb motions. Method for classification of forearm positions and movements based on training of feedforward artificial neural networks (ANN) is presented in this paper. The ANN input data were acquired using inertial sensors (3-axis accelerometer and gyroscope) placed on the forearm. The overall performance of forearm movement classification was 92.5%. The accuracy of classification of the forearm position was 81.2%.
引用
收藏
页码:358 / 361
页数:4
相关论文
共 50 条
  • [31] Evolving Artificial Neural Networks Using Butterfly Optimization Algorithm for Data Classification
    Jalali, Seyed Mohammad Jafar
    Ahmadian, Sajad
    Kebria, Parham M.
    Khosravi, Abbas
    Lim, Chee Peng
    Nahavandi, Saeid
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT I, 2019, 11953 : 596 - 607
  • [32] ARTIFICIAL NEURAL NETWORKS APPLIED TO THE CLASSIFICATION OF HAND GESTURES USING ELETROMYOGRAPHIC SIGNALS
    Fonseca, M. G. B.
    Conceicao, A. G. S.
    Simas Filho, E. F.
    2017 LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS) AND 2017 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR), 2017,
  • [33] Modelling, prediction and classification of student academic performance using artificial neural networks
    Lau, E. T.
    Sun, L.
    Yang, Q.
    SN APPLIED SCIENCES, 2019, 1 (09):
  • [34] Modelling, prediction and classification of student academic performance using artificial neural networks
    E. T. Lau
    L. Sun
    Q. Yang
    SN Applied Sciences, 2019, 1
  • [35] Classification of Uroflowmetry and EMG Signals of Pediatric Patients using Artificial Neural Networks
    Yalcinkaya, Fikret
    Caliskan, Ozan
    Erogul, Osman
    Irkilata, Cem
    Kopru, Burak
    Coguplugil, Emrah
    2017 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO), 2017,
  • [36] Prediction of Powder Injection Molding Process Parameters Using Artificial Neural Networks
    Rajabi, Javad
    Muhamad, Norhamidi
    Rajabi, Maryam
    Rajabi, Jamal
    JURNAL TEKNOLOGI, 2012, 59
  • [37] Evaluation of effect of blast design parameters on flyrock using artificial neural networks
    M. Monjezi
    A. Mehrdanesh
    A. Malek
    Manoj Khandelwal
    Neural Computing and Applications, 2013, 23 : 349 - 356
  • [38] Evaluation of effect of blast design parameters on flyrock using artificial neural networks
    Monjezi, M.
    Mehrdanesh, A.
    Malek, A.
    Khandelwal, Manoj
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (02) : 349 - 356
  • [39] PREDICTION OF PERFORMANCE AND EMISSION PARAMETERS OF AN SI ENGINE BY USING ARTIFICIAL NEURAL NETWORKS
    Atik, Kemal
    Kahraman, Nafiz
    Ceper, Bilge Albayrak
    ISI BILIMI VE TEKNIGI DERGISI-JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2013, 33 (02) : 57 - 64
  • [40] Prediction of cutting process parameters in boring operations using artificial neural networks
    Ramesh, K.
    Alwarsamy, T.
    Jayabal, S.
    JOURNAL OF VIBRATION AND CONTROL, 2015, 21 (06) : 1043 - 1054