Decay characterization of solutions to the viscous Camassa-Holm equations

被引:18
作者
Cung The Anh [1 ]
Pham Thi Trang [2 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy, Hanoi, Vietnam
[2] Hai Duong Coll, Dept Nat Sci, 43 Nguyen Thi Due, Thanh Binh, Hai Duong, Vietnam
关键词
viscous Camassa-Holm equations; decay characterization; upper bound; lower bound; decay rate; Fourier splitting method; inductive argument; NAVIER-STOKES EQUATIONS; GLOBAL WELL-POSEDNESS; ALPHA EQUATIONS; DATA ASSIMILATION; BOUNDED DOMAINS; WEAK SOLUTIONS; MODEL; ATTRACTORS; EXISTENCE;
D O I
10.1088/1361-6544/aa96ce
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the decay characterization in the space H-sigma(K)(R-n) of solutions to the viscous Camassa-Holm equations (VCHE) in the whole space R-n (n = 2, 3, 4), namely, parallel to partial derivative(p)(t)del(m)v(t)parallel to(2) <= C(1+t)(-min(r*+m+n/2+2p,m+n/2+2p+1)) where m + 2p <= K, r* = r* (v(0)) is the decay character of the initial datum v(0) is an element of H-sigma(K) (R-n). We also get the optimal lower bounds for decay rates of solutions to VCHE when -n/2 < r* <= 1. In particular, when v(0) is an element of H-sigma(K) (R-n) boolean AND L-1(R-n) has decay character r* (v(0)) = 0, then we recover the previous results of Bjorland and Schonbek. (2008 Ann. Inst. Henri Poincare Anal. Non Lineaire 25 907-36).
引用
收藏
页码:621 / 650
页数:30
相关论文
共 26 条
[1]  
Adams R.A., 1975, SOBOLEV SPACES, V65
[2]   Continuous data assimilation for the three-dimensional Navier-Stokes-α model [J].
Albanez, Debora A. F. ;
Nussenzveig Lopes, Helena J. ;
Titi, Edriss S. .
ASYMPTOTIC ANALYSIS, 2016, 97 (1-2) :139-164
[3]   On questions of decay and existence for the viscous Camassa-Holm equations [J].
Bjorland, Clayton ;
Schonbek, Maria E. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (05) :907-936
[4]   DECAY ASYMPTOTICS OF THE VISCOUS CAMASSA-HOLM EQUATIONS IN THE PLANE [J].
Bjorland, Clayton .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) :516-539
[5]  
Bjorland C, 2009, ADV DIFFERENTIAL EQU, V14, P241
[6]   CHARACTERIZATION OF SOLUTIONS TO DISSIPATIVE SYSTEMS WITH SHARP ALGEBRAIC DECAY [J].
Brandolese, Lorenzo .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (03) :1616-1633
[7]   On the large time behavior of solutions of the alpha Navier-Stokes equations [J].
Busuioc, Adriana Valentina .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (23-24) :2261-2272
[8]   Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains [J].
Coutand, D ;
Peirce, J ;
Shkoller, S .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2002, 1 (01) :35-50
[9]   Decay rate of solutions to 3D Navier-Stokes-Voigt equations in Hm spaces [J].
Cung The Anh ;
Pham Thi Trang .
APPLIED MATHEMATICS LETTERS, 2016, 61 :1-7
[10]   The Navier-Stokes-alpha model of fluid turbulence [J].
Foias, C ;
Holm, DD ;
Titi, ES .
PHYSICA D, 2001, 152 :505-519