A Dirichlet-Neumann cost functional approach for the Bernoulli problem

被引:17
作者
Ben Abda, A. [1 ]
Bouchon, F. [2 ,3 ]
Peichl, G. H. [4 ]
Sayeh, M. [1 ]
Touzani, R. [2 ,3 ]
机构
[1] El Manar Univ, Lab Modelisat Math & Numer Sci Ingn LAMSIN, Tunis, Tunisia
[2] Univ Blaise Pascal, Clermont Univ, Lab Math, F-63000 Clermont Ferrand, France
[3] CNRS, Lab Math, UMR 6620, F-63177 Aubiere, France
[4] Graz Univ, Inst Math & Sci Comp, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Bernoulli problem; Domain perturbation; Free boundary; Level set method; Shape optimization; Shape derivative; FREE-BOUNDARY PROBLEM; SHAPE OPTIMIZATION; NUMERICAL-SOLUTION; DOMAIN; FLOW;
D O I
10.1007/s10665-012-9608-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Bernoulli problem is rephrased into a shape optimization problem. In particular, the cost function, which turns out to be a constitutive law gap functional, is borrowed from inverse problem formulations. The shape derivative of the cost functional is explicitly determined. The gradient information is combined with the level set method in a steepest descent algorithm to solve the shape optimization problem. The efficiency of this approach is illustrated by numerical results for both interior and exterior Bernoulli problems.
引用
收藏
页码:157 / 176
页数:20
相关论文
共 37 条
[1]   HEAT-FLOW INEQUALITIES WITH APPLICATIONS TO HEAT-FLOW OPTIMIZATION PROBLEMS [J].
ACKER, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (04) :604-618
[3]  
[Anonymous], 2002, Applied Mathematical Sciences
[4]  
[Anonymous], SHAPES GEOMETRIES
[5]  
[Anonymous], 1999, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
[6]  
[Anonymous], 1976, 76015 U PIERR MAR CU
[7]   TOPOLOGICAL SENSITIVITY ANALYSIS FOR THE LOCATION OF SMALL CAVITIES IN STOKES FLOW [J].
Ben Abda, A. ;
Hassine, M. ;
Jaoua, M. ;
Masmoudi, M. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (05) :2871-2900
[8]  
Beurling A., 1957, SEMINARS ANAL FUNCTI, V1, P248
[9]   Numerical solution of the free boundary Bernoulli problem using a level set formulation [J].
Bouchon, F ;
Clain, S ;
Touzani, R .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (36-38) :3934-3948
[10]  
Bouchon F, 2008, J COMPUT MATH, V26, P23