Chemical Data Assimilation-An Overview

被引:71
作者
Sandu, Adrian [1 ]
Chai, Tianfeng [2 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Comp Sci, Sci Computat Lab, Blacksburg, VA 24061 USA
[2] NOAA, OAR, ARL, Silver Spring Metro Ctr 3, Silver Spring, MD 20910 USA
基金
美国国家科学基金会;
关键词
chemical transport modeling; data assimilation; Kalman filter; variational methods; ENSEMBLE KALMAN FILTER; ADJOINT SENSITIVITY-ANALYSIS; DYNAMICALLY CONSISTENT FORMULATIONS; VARIATIONAL DATA ASSIMILATION; SEQUENTIAL DATA ASSIMILATION; CHEMISTRY-TRANSPORT MODEL; RUNGE-KUTTA METHODS; AIR-QUALITY MODELS; PART I; METEOROLOGICAL OBSERVATIONS;
D O I
10.3390/atmos2030426
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Chemical data assimilation is the process by which models use measurements to produce an optimal representation of the chemical composition of the atmosphere. Leveraging advances in algorithms and increases in the available computational power, the integration of numerical predictions and observations has started to play an important role in air quality modeling. This paper gives an overview of several methodologies used in chemical data assimilation. We discuss the Bayesian framework for developing data assimilation systems, the suboptimal and the ensemble Kalman filter approaches, the optimal interpolation (OI), and the three and four dimensional variational methods. Examples of assimilation real observations with CMAQ model are presented.
引用
收藏
页码:426 / 463
页数:38
相关论文
共 181 条
  • [1] A regional scale chemical transport modeling of Asian aerosols with data assimilation of AOD observations using optimal interpolation technique
    Adhikary, B.
    Kulkarni, S.
    Dallura, A.
    Tang, Y.
    Chai, T.
    Leung, L. R.
    Qian, Y.
    Chung, C. E.
    Ramanathan, V.
    Carmichael, G. R.
    [J]. ATMOSPHERIC ENVIRONMENT, 2008, 42 (37) : 8600 - 8615
  • [2] Alexe Mihai, 2007, Proceedings of the 45th ACM Southeast Conference. ACMSE 07, P373, DOI 10.1145/1233341.1233409
  • [3] Alexe M., 2011, INVERSE PROBL UNPUB
  • [4] Alexe M., 2011, P INT C COMP SCI ICC
  • [5] On the discrete adjoints of adaptive time stepping algorithms
    Alexe, Mihai
    Sandu, Adrian
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (04) : 1005 - 1020
  • [6] Forward and adjoint sensitivity analysis with continuous explicit Runge-Kutta schemes
    Alexe, Mihai
    Sandu, Adrian
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 208 (02) : 328 - 346
  • [7] Anderson JL, 2001, MON WEATHER REV, V129, P2884, DOI 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO
  • [8] 2
  • [9] Anderson JL, 1999, MON WEATHER REV, V127, P2741, DOI 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO
  • [10] 2