On the semimartingale nature of Feller processes with killing

被引:13
作者
Schnurr, Alexander [1 ]
机构
[1] Tech Univ Dortmund, Fak Math, Lehrstuhl 4, D-44227 Dortmund, Germany
关键词
Semimartingale; Killed process; Feller semigroup; Negative definite symbol; OPERATORS; SYMBOLS;
D O I
10.1016/j.spa.2012.04.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let U he an open set in R-d. We show that under a mild assumption on the richness of the generator, a Feller process in (U, B(U)) with (predictable) killing is a semimartingale. To this end, we generalize the notion of semimartingales in a natural way to those 'with killing'. Furthermore we calculate the semimartingale characteristics of the Feller process explicitly and analyze their connections to the symbol. Finally we derive a probabilistic formula for calculating the symbol of the process. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2758 / 2780
页数:23
相关论文
共 26 条
[1]  
Abels H, 2009, OSAKA J MATH, V46, P661
[2]  
[Anonymous], 1975, Potential Theory on Locally Compact Abelian Groups
[3]  
[Anonymous], 1998, THESIS U BIELEFELD
[4]  
[Anonymous], 2004, Semigroups, boundary value problems and Markov processes
[5]  
BLUMENTHAL R. M., 1968, Markov Processes and Potential Theory
[6]   A parametrix construction for the fundamental solution of the evolution equation associated with a pseudo-differential operator generating a Markov process [J].
Böttcher, B .
MATHEMATISCHE NACHRICHTEN, 2005, 278 (11) :1235-1241
[7]   SEMI-MARTINGALES AND MARKOV-PROCESSES [J].
CINLAR, E ;
JACOD, J ;
PROTTER, P ;
SHARPE, MJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 54 (02) :161-219
[8]  
Cinlar E., 1981, Seminar on Stochastic Processes, 1981, P159
[9]  
Courrege P., 1965, SEM THEORIE POTENTIE, V10
[10]  
Ethier S. N., 2005, WILEY SERIES PROBABI