Gradient estimates and Liouville type theorems for a nonlinear elliptic equation

被引:15
作者
Huang, Guangyue [1 ,2 ]
Ma, Bingqing [1 ,2 ]
机构
[1] Henan Normal Univ, Dept Math, Xinxiang 453007, Peoples R China
[2] Henan Normal Univ, Sch Math & Informat Sci, Henan Engn Lab Big Data Stat Anal & Optimal Contr, Xinxiang 453007, Peoples R China
关键词
Gradient estimate; Nonlinear elliptic equation; Liouville-type theorem; RIEMANNIAN-MANIFOLDS; PARABOLIC EQUATION;
D O I
10.1007/s00013-015-0820-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M (n) , g) be an n-dimensional complete Riemannian manifold. We consider gradient estimates and Liouville type theorems for positive solutions to the following nonlinear elliptic equation: Delta mu + au log u = 0 where a is a nonzero constant. In particular, for a < 0, we prove that any bounded positive solution of the above equation with a suitable condition for a with respect to the lower bound of Ricci curvature must be . This generalizes a classical result of Yau.
引用
收藏
页码:491 / 499
页数:9
相关论文
共 12 条
[1]   A Liouville-Type Theorem for Smooth Metric Measure Spaces [J].
Brighton, Kevin .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) :562-570
[2]   Differential Harnack estimates for a nonlinear heat equation [J].
Cao, Xiaodong ;
Ljungberg, Benjamin Fayyazuddin ;
Liu, Bowei .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (10) :2312-2330
[3]   Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds [J].
Chen, Li ;
Chen, Wenyi .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 35 (04) :397-404
[4]  
Fabes E., 1993, LECT NOTES MATH, V1563, P54
[5]   Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds [J].
Huang, Guangyue ;
Huang, Zhijie ;
Li, Haizhong .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2013, 43 (03) :209-232
[6]  
LI JY, 1991, J FUNCT ANAL, V100, P233
[7]   Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds [J].
Ma, Li .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 241 (01) :374-382
[8]   A uniform bound for the solutions to a simple nonlinear equation on Riemannian manifolds [J].
Qian, Bin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (06) :1538-1542
[9]  
Schoen R. M., 1994, Conference Proceedings and Lecture Notes in Geometry and Topology, VI
[10]   Li-Yau type estimates for a nonlinear parabolic equation on complete manifolds [J].
Wu, Jia-Yong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) :400-407