Active Dataset Generation for Meta-learning System Quality Improvement

被引:0
|
作者
Zabashta, Alexey [1 ]
Filchenkov, Andrey [1 ]
机构
[1] ITMO Univ, Machine Learning Lab, 49 Kronverksky Pr, St Petersburg 197101, Russia
来源
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2019, PT I | 2019年 / 11871卷
基金
俄罗斯科学基金会;
关键词
Machine learning; Meta-learning; Active learning; Evolutionary Computation; Optimization;
D O I
10.1007/978-3-030-33607-3_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Meta-learning use meta-features to formally describe datasets and find possible dependencies of algorithm performance from them. But there is not enough of various datasets to fill a meta-feature space with acceptable density for future algorithm performance prediction. To solve this problem we can use active learning. But it is required ability to generate nontrivial datasets that can help to improve the quality of the meta-learning system. In this paper we experimentally compare several such approaches based on maximize diversity and Bayesian optimization.
引用
收藏
页码:394 / 401
页数:8
相关论文
共 50 条
  • [1] Learning Meta-Learning (LML) dataset: Survey data of meta-learning parameters
    Corraya, Sonia
    Al Mamun, Shamim
    Kaiser, M. Shamim
    DATA IN BRIEF, 2023, 51
  • [2] Improved dataset characterisation for meta-learning
    Peng, YH
    Flach, PA
    Soares, C
    Brazdil, P
    DISCOVERY SCIENCE, PROCEEDINGS, 2002, 2534 : 141 - 152
  • [3] Probabilistic Active Meta-Learning
    Kaddour, Jean
    Saemundsson, Steindor
    Deisenroth, Marc Peter
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [4] Meta-learning in active inference
    Penacchio, O.
    Clemente, A.
    BEHAVIORAL AND BRAIN SCIENCES, 2024, 47
  • [5] Meta-learning experiences with the MINDFUL system
    Castiello, C
    Fanelli, AM
    COMPUTATIONAL INTELLIGENCE AND SECURITY, PT 1, PROCEEDINGS, 2005, 3801 : 321 - 328
  • [6] Investigating Active Learning and Meta-Learning for Iterative Peptide Design
    Barrett, Rainier
    White, Andrew D.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (01) : 95 - 105
  • [7] Meta-learning for dynamic tuning of active learning on stream classification
    Martins, Vinicius Eiji
    Cano, Alberto
    Barbon, Sylvio, Jr.
    PATTERN RECOGNITION, 2023, 138
  • [8] Active Meta-Learning with Uncertainty Sampling and Outlier Detection
    Prudencio, Ricardo B. C.
    Ludermir, Teresa B.
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 346 - 351
  • [9] Improvement Flower Pollination Extreme Learning Machine Based on Meta-Learning
    Boriratrit, Sarunyoo
    Chiewchanwattana, Sirapat
    Sunat, Khamron
    Musikawan, Pakarat
    Horata, Punyaphol
    2016 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2016, : 195 - 200
  • [10] Combining Uncertainty Sampling Methods for Active Meta-Learning
    Prudencio, Ricardo B. C.
    Ludermir, Teresa B.
    2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2009, : 220 - 225