Enhanced supercapacitive performance on TiO2@C coaxial nano-rod array through a bio-inspired approach

被引:65
作者
Tang, Haolin [1 ]
Xiong, Ming [1 ]
Qu, Deyu [2 ]
Liu, Dan [2 ]
Zhang, Zijuan [3 ]
Xie, Zhizhong [2 ]
Wei, Xi [1 ]
Tu, Wenmao [1 ]
Qu, Deyang [3 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Dept Chem, Wuhan 430070, Peoples R China
[3] Univ Wisconsin, Coll Engn & Appl Sci, Dept Mech Engn, Milwaukee, WI 53211 USA
关键词
TiO2 nanotube array; Dopamine self polymerization; Pseudocapacitive; TiO2@C nanorod array; ASYMMETRIC SUPERCAPACITOR; CARBON SPHERES; TIO2; NANOTUBES; POROUS CARBON; ELECTRODES; GRAPHENE; ENERGY; MNO2; CAPACITANCE; SURFACE;
D O I
10.1016/j.nanoen.2015.04.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A coaxial core-shell structured TiO2@carbon nano-rod arrays (TiO2@C NRAs) was constructed and tested as a supercapacitor electrode in this study. Dopamine was self-assembled into a polydopamine nano-rod arrays within the TiO2 nano-tube arrays (TiO2 NTAs) and was used as a precursor for the carbon nano-rod generation. Electrochemical measurements showed that the electrodes made with coaxial TiO2@C NRAs exhibited substantially higher electrochemical performances such as larger areal capacitance and faster charge/discharge capability than those of the pristine TiO2 NTA electrode and porous active carbon materials. Benefiting from the enhanced electrical conductivity and increased surface area of the coaxial nano-rod structure, the prepared coaxial TiO2@e NRAs electrode achieved a remarkable areal capacitance of 40.75 mF cm(-2) at a current density of 0.2 mA cm(-2), which was significantly higher than that of the pristine TiO2 NTAs (0.31 mF cm(-2)). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 63 条
[1]  
[Anonymous], 1979, HANDBOOK OF X RAY PH
[2]   Physical and electrochemical properties of iodine-modified activated carbons [J].
Barpanda, P. ;
Fanchini, G. ;
Amatucci, G. G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (05) :A467-A476
[3]   Investigation of the effect of a nitrogen-containing atmosphere on the carbothermal reduction of titanium dioxide [J].
Berger, LM ;
Gruner, W .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2002, 20 (03) :235-251
[4]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/NMAT2612, 10.1038/nmat2612]
[5]   Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors [J].
Brousse, Thierry ;
Toupin, Mathieu ;
Dugas, Romain ;
Athouel, Laurence ;
Crosnier, Olivier ;
Belanger, Daniel .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (12) :A2171-A2180
[6]   High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes [J].
Cao, Jianyun ;
Wang, Yaming ;
Zhou, Yu ;
Ouyang, Jia-Hu ;
Jia, Dechang ;
Guo, Lixin .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 689 :201-206
[7]   Graphene Hydrogels Deposited in Nickel Foams for High-Rate Electrochemical Capacitors [J].
Chen, Ji ;
Sheng, Kaixuan ;
Luo, Peihui ;
Li, Chun ;
Shi, Gaoquan .
ADVANCED MATERIALS, 2012, 24 (33) :4569-4573
[8]   Bacterial-Cellulose-Derived Carbon Nanofiber@MnO2 and Nitrogen-Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Guan, Qing-Fang ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (34) :4746-4752
[9]   Inkjet Printing of Single-Walled Carbon Nanotube/RuO2 Nanowire Supercapacitors on Cloth Fabrics and Flexible Substrates [J].
Chen, Pochiang ;
Chen, Haitian ;
Qiu, Jing ;
Zhou, Chongwu .
NANO RESEARCH, 2010, 3 (08) :594-603
[10]   Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability [J].
Chen, Xiang Ying ;
Chen, Chong ;
Zhang, Zhong Jie ;
Xie, Dong Hua ;
Deng, Xiao ;
Liu, Jian Wei .
JOURNAL OF POWER SOURCES, 2013, 230 :50-58