Expanding the simple pendulum's rotation solution in action-angle variables

被引:4
作者
Lara, Martin [1 ]
Ferrer, Sebastian [2 ]
机构
[1] Polytech Univ Madrid UPM, Space Dynam Grp, ETSI Aeronaut, Madrid 28040, Spain
[2] Univ Murcia, Dept Appl Math, E-30071 Murcia, Spain
关键词
simple pendulum; Hamilton-Jacobi method; series expansion; series reversion; action-angle variables; elliptic functions; NONLINEAR PENDULUM; MOTION;
D O I
10.1088/0143-0807/36/5/055040
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Integration of Hamiltonian systems by reduction to action-angle variables has proven to be a successful approach. However, when the solution depends on elliptic functions, the transformation to action-angle variables may need to remain in implicit form. This is exactly the case of the simple pendulum, where it is shown that in order to make explicit the transformation to action-angle variables, one needs to resort to nontrivial expansions of special functions and series reversion.
引用
收藏
页数:10
相关论文
共 20 条
[1]  
Arnold V. I., 2013, Mathematical methods of classical mechanics, V60
[2]  
BAKER GL, 2005, CASE STUDY PHYS
[3]   Approximate expressions for the period of a simple pendulum using a Taylor series expansion [J].
Belendez, Augusto ;
Arribas, Enrique ;
Marquez, Andres ;
Ortuno, Manuel ;
Gallego, Sergi .
EUROPEAN JOURNAL OF PHYSICS, 2011, 32 (05) :1303-1310
[4]  
Borghi R, 2013, ARXIV13035023V1
[5]   Jacobi zeta function and action-angle coordinates for the pendulum [J].
Brizard, Alain J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (03) :511-518
[6]   A primer on elliptic functions with applications in classical mechanics [J].
Brizard, Alain J. .
EUROPEAN JOURNAL OF PHYSICS, 2009, 30 (04) :729-750
[7]  
Byrd P.F., 1971, HDB ELLIPTIC INTEGRA
[8]  
Ferraz-Mello S., 2007, CANONICAL PERTURBATI
[9]   FAMILIES OF CANONICAL TRANSFORMATIONS BY HAMILTON-JACOBI-POINCARE EQUATION. APPLICATION TO ROTATIONAL AND ORBITAL MOTION [J].
Ferrer, Sebastian ;
Lara, Martin .
JOURNAL OF GEOMETRIC MECHANICS, 2010, 2 (03) :223-241
[10]   THEORETICAL AND EXPERIMENTAL STUDY OF MOTION OF SIMPLE PENDULUM [J].
FULCHER, LP ;
DAVIS, BF .
AMERICAN JOURNAL OF PHYSICS, 1976, 44 (01) :51-55