Cohomology of canonical projection tilings

被引:18
作者
Forrest, AH [1 ]
Hunton, JR
Kellendonk, J
机构
[1] NTNU Lade, IMF, N-7034 Trondheim, Norway
[2] Univ Leicester, Dept Math & Comp Sci, Leicester LE1 7RH, Leics, England
[3] Tech Univ Berlin, Fachbereich Math, Sekr MA 7 2, D-10623 Berlin, Germany
关键词
D O I
10.1007/s002200200594
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define the cohomology of a tiling as the cocycle cohomology of its associated groupoid and consider this cohomology for the class of tilings which are obtained from a higher dimensional lattice by the canonical projection method in Schlottmann's formulation. We prove the cohomology to be equivalent to a certain cohomology of the lattice. We discuss one of its qualitative features. namely that it provides a topological obstruction for a generic tiling to be substitutional. We develop and demonstrate techniques for the computation of cohomology for tilings of codimension smaller than or equal to 2, presenting explicit formulae. These in turn give computations for the K-theory of certain associated non-commutative C* algebras.
引用
收藏
页码:289 / 322
页数:34
相关论文
共 41 条
[1]   Topological invariants for substitution tilings and their associated C*-algebras [J].
Anderson, JE ;
Putnam, IF .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1998, 18 :509-537
[2]  
[Anonymous], 1992, From Number Theory to Physics (Les Houches, 1989), P538
[3]  
AXEL F, 1995, BEHOND QUASICRYSTALS
[4]   ROOT LATTICES AND QUASI-CRYSTALS [J].
BAAKE, M ;
JOSEPH, D ;
KRAMER, P ;
SCHLOTTMANN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (19) :L1037-L1041
[5]   The torus parametrization of quasiperiodic LI-classes [J].
Baake, M ;
Hermisson, J ;
Pleasants, PAB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (09) :3029-3056
[6]  
BEENKER FPM, 1982, 82WSK04 TU EINDH
[7]   K-theory of quasicrystals, gap labelling: the octagonal lattice [J].
Bellissard, J ;
Contensou, E ;
Legrand, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (02) :197-200
[8]  
Bellissard J., 1992, Reviews in Mathematical Physics, V4, P1, DOI 10.1142/S0129055X92000029
[9]  
Blackadar B., 1986, MSRI PUBLICATIONS, V5
[10]  
Brown K. S., 1982, COHOMOLOGY GROUPS