Soliton and other solutions of nonlinear time fractional parabolic equations using extended G′/G-expansion method

被引:22
作者
Ekici, Mehmet [1 ]
机构
[1] Bozok Univ, Fac Sci & Arts, Dept Math, TR-66100 Yozgat, Turkey
来源
OPTIK | 2017年 / 130卷
关键词
Solitons; Extended G '/G-expansion method; Nonlinear time fractional parabolic equations; TRAVELING-WAVE SOLUTIONS; POWER-LAW NONLINEARITY; SYMBOLIC COMPUTATION; (G'/G)-EXPANSION METHOD; DIFFERENTIAL-EQUATIONS; PERTURBATION TECHNIQUE; MATHEMATICAL PHYSICS; EVOLUTION-EQUATIONS; PERIODIC-SOLUTIONS; KDV;
D O I
10.1016/j.ijleo.2016.11.104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper utilizes Jumarie's modified Riemann-Liouville derivative and extended G'/G-expansion method to discuss the soliton solutions of the nonlinear time fractional parabolic equations. Exact solutions are expressed in terms of hyperbolic and trigonometric functions. These solutions may be useful and desirable to explain some nonlinear physical phenomena in genuinely nonlinear fractional calculus. Several constraint conditions naturally emerge from the results obtained and these conditions are also listed. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:1312 / 1319
页数:8
相关论文
共 39 条
[1]  
Akgul A., 2013, ABSTR APPL ANAL, V2013, P41435
[2]  
Arnous A. H., 2014, MATH METHODS APPL SC
[3]   Application of the Subequation Method to Some Differential Equations of Time-Fractional Order [J].
Bekir, Ahmet ;
Aksoy, Esin .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015, 10 (05)
[4]   Exact solutions of nonlinear fractional differential equations by (G′/G)-expansion method [J].
Bekir, Ahmet ;
Guner, Ozkan .
CHINESE PHYSICS B, 2013, 22 (11)
[5]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[6]   Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobi's elliptic function method [J].
Bhrawy, A. H. ;
Abdelkawy, M. A. ;
Biswas, Anjan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (04) :915-925
[7]   Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrodinger equations [J].
Bhrawy, Ali H. ;
Alzaidy, Jameel F. ;
Abdelkawy, Mohamed A. ;
Biswas, Anjan .
NONLINEAR DYNAMICS, 2016, 84 (03) :1553-1567
[8]   A series of new soliton-like solutions and double-like periodic solutions of a (2+I)-dimensional dispersive long wave equation [J].
Chen, Y ;
Wang, Q .
CHAOS SOLITONS & FRACTALS, 2005, 23 (03) :801-807
[9]   A new general algebraic method with symbolic computation to construct new doubly-periodic solutions of the (2+1)-dimensional dispersive long wave equation [J].
Chen, Y ;
Wang, Q .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 167 (02) :919-929
[10]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804