Which Functions are Fractionally Differentiable?

被引:66
作者
Vainikko, Gennadi [1 ,2 ]
机构
[1] Univ Tartu, Inst Math & Stat, J Liivi 2, EE-50409 Tartu, Estonia
[2] Estonian Acad Sci, Kohtu 6, EE-10130 Tallinn, Estonia
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2016年 / 35卷 / 04期
关键词
Inversion of Riemann-Liouville operator; Riemann-Liouville fractional derivative; Caputo fractional derivative; description of fractionally differentiable functions;
D O I
10.4171/ZAA/1574
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the existence of fractional derivatives of a function in terms of the pointwise convergence or equiconvergence of certain improper integrals containing this function. The fractional differentiation operator is treated as the inverse to the Riemann-Liouville integral operator. Technically, we give a description of the range of the Riemann-Liouville operator. The results are reformulated also for Riemann-Liouville and Caputo fractional derivatives.
引用
收藏
页码:465 / 487
页数:23
相关论文
共 8 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 2010, LECT NOTES MATH
[3]  
HACKBUSCH W, 1989, INTEGRALGLEICHUNGEN
[4]   A Smooth Solution of a Singular Fractional Differential Equation [J].
Laett, Kaido ;
Pedas, Arvet ;
Vainikko, Gennadi .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (02) :127-146
[5]  
Luchko Y., 1999, Acta Math. Vietnam., V24, P207
[6]  
Podlubny I., 1999, FRACTIONAL DIFFERENT
[7]   FIRST KIND CORDIAL VOLTERRA INTEGRAL EQUATIONS 2 [J].
Vainikko, Gennadi .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2014, 35 (12) :1607-1637
[8]  
Vinogradov I. M., 1977, MATH ENCY, V1