How the Cucumber Tendril Coils and Overwinds

被引:349
作者
Gerbode, Sharon J. [1 ,2 ,3 ]
Puzey, Joshua R. [4 ]
McCormick, Andrew G. [5 ]
Mahadevan, L. [1 ,2 ,4 ,5 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
[3] Harvey Mudd Coll, Dept Phys, Claremont, CA 91711 USA
[4] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[5] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
关键词
GELATINOUS FIBERS; CLIMBING PLANTS; CURVATURE; GENERATION; PERVERSION; MECHANISM; HELIX; FORCE; WOOD;
D O I
10.1126/science.1223304
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The helical coiling of plant tendrils has fascinated scientists for centuries, yet the underlying mechanism remains elusive. Moreover, despite Darwin's widely accepted interpretation of coiled tendrils as soft springs, their mechanical behavior remains unknown. Our experiments on cucumber tendrils demonstrate that tendril coiling occurs via asymmetric contraction of an internal fiber ribbon of specialized cells. Under tension, both extracted fiber ribbons and old tendrils exhibit twistless overwinding rather than unwinding, with an initially soft response followed by strong strain-stiffening at large extensions. We explain this behavior using physical models of prestrained rubber strips, geometric arguments, and mathematical models of elastic filaments. Collectively, our study illuminates the origin of tendril coiling, quantifies Darwin's original proposal, and suggests designs for biomimetic twistless springs with tunable mechanical responses.
引用
收藏
页码:1087 / 1091
页数:5
相关论文
共 23 条
[11]   PHYSIOLOGY OF TENDRILS [J].
JAFFE, MJ ;
GALSTON, AW .
ANNUAL REVIEW OF PLANT PHYSIOLOGY, 1968, 19 :417-&
[12]  
Keller J.B., 1980, Lectures on mathematics in the life sciences, V13, P257
[13]   Cellular structure of tendrils [J].
Lisk, Henrietta .
BOTANICAL GAZETTE, 1924, 78 (1-4) :85-102
[14]  
Love AEH., 2013, A treatise on the mathematical theory of elasticity
[15]  
MacDougal D.T., 1896, ANN BOT-LONDON, Vos-10, P373, DOI DOI 10.1093/OXFORDJOURNALS.AOB.A088619
[16]   Tendril perversion in intrinsically curved rods [J].
McMillen, T ;
Goriely, A .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (03) :241-281
[17]   A cortical band of gelatinous fibers causes the coiling of redvine tendrils: a model based upon cytochemical and immunocytochemical studies [J].
Meloche, Christopher G. ;
Knox, J. Paul ;
Vaughn, Kevin C. .
PLANTA, 2007, 225 (02) :485-498
[18]   Genetic control of surface curvature [J].
Nath, U ;
Crawford, BCW ;
Carpenter, R ;
Coen, E .
SCIENCE, 2003, 299 (5611) :1404-1407
[19]   On the growth and form of the gut [J].
Savin, Thierry ;
Kurpios, Natasza A. ;
Shyer, Amy E. ;
Florescu, Patricia ;
Liang, Haiyi ;
Mahadevan, L. ;
Tabin, Clifford J. .
NATURE, 2011, 476 (7358) :57-+
[20]   Temporal and spatial patterns of twining force and lignification in stems of Ipomoea purpurea [J].
Scher, JL ;
Holbrook, NM ;
Silk, WK .
PLANTA, 2001, 213 (02) :192-198