Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te)

被引:247
作者
Chia, Xinyi [1 ]
Ambrosi, Adriano [1 ]
Lazar, Petr [2 ]
Sofer, Zdenek [3 ]
Pumera, Martin [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Chem & Biol Chem, Singapore 637371, Singapore
[2] Palacky Univ, Dept Phys Chem, Fac Sci, Reg Ctr Adv Technol & Mat, Tr 17 Listopadu 12, Olomouc 77146, Czech Republic
[3] Univ Chem & Technol Prague, Dept Inorgan Chem, Tech 5, Prague 16628 6, Czech Republic
关键词
ELECTROCHEMICAL H-2 EVOLUTION; ACTIVE EDGE SITES; HYDROGEN EVOLUTION; RAY PHOTOELECTRON; BINDING-ENERGIES; VANADIUM-OXIDES; MOS2; XPS; NIOBIUM; NANOSHEETS;
D O I
10.1039/c6ta05110c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The revelation of MoS2 as an efficient electrocatalyst for the hydrogen evolution reaction (HER) has ratcheted up interest in other transition metal dichalcogenides (TMDs). To date, extensive studies have been focused towards semiconducting Group 6 TMDs while research into metallic Group 5 TMDs has been comparatively limited. Past computational screening of Group 5 TMDs showed propitious Gibbs free energy of the adsorbed hydrogen (DGH) for HER, especially for VS2, which prompted us to experimentally explore their HER efficiency. In addition to the HER electrocatalytic performance, we examine the inherent electrochemistry and the charge-transfer property of the entire set of Group 5 TMDs in the bulk form: VS2, VSe2, VTe2, NbS2, NbSe2, NbTe2, TaS2, TaSe2 and TaTe2. We demonstrate that the nine Group 5 TMDs show distinctive inherent electroactivities arising from their intrinsic electrochemical processes or surface oxides. TaS2 possesses the fastest heterogeneous electron transfer (HET) rate at 3.4 x 10(-3) cm s(-1) amongst the Group 5 TMDs and may be ideal for electrochemical sensing. Chalcogen dependence is evident in the electrochemical charge-transfer ability of the Group 5 TMDs whereby tellurides show slower HET rates than sulfides and selenides. We identify VTe2 as the best-performing material for HER contrary to the widely predicted VS2. VTe2 manifests the lowest HER overpotential at 0.5 V vs. RHE and Tafel slope of 55 mV dec(-1). Interestingly, the HER performance of vanadium dichalcogenides and Group 5 tellurides shows chalcogen- and transition metal-dependence, respectively. Reasons behind their HER performance have also been proposed from our theoretical studies found on thermodynamics and kinetics. Broadly, the HER performances of bulk Group 5 TMDs are less outstanding than those expected despite being true metals. This fundamental study provides fresh insights into the electrochemical and electrocatalytic characteristics of metallic Group 5 TMDs that will be indispensable for the development of TMDs in future applications.
引用
收藏
页码:14241 / 14253
页数:13
相关论文
共 73 条
[1]  
Acerce M, 2015, NAT NANOTECHNOL, V10, P313, DOI [10.1038/NNANO.2015.40, 10.1038/nnano.2015.40]
[2]  
[Anonymous], COLLECT CZECH CHEM C
[3]  
[Anonymous], SULPHUR EH PH DIAGRA
[4]  
[Anonymous], 1988, TELLURIUM EH PH DIAG
[5]  
[Anonymous], ELENIUM EH PH DIAGRA
[6]  
Audi AA, 2000, SURF INTERFACE ANAL, V29, P265, DOI 10.1002/(SICI)1096-9918(200004)29:4<265::AID-SIA739>3.0.CO
[7]  
2-3
[8]   ESCA STUDIES OF SOME NIOBIUM COMPOUNDS [J].
BAHL, MK .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1975, 36 (06) :485-491
[9]   Chemically-selective and spatially-localized redox activity at Ta/Ta2O5 electrodes [J].
Basame, SB ;
White, HS .
LANGMUIR, 1999, 15 (03) :819-825
[10]   Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials [J].
Benck, Jesse D. ;
Hellstern, Thomas R. ;
Kibsgaard, Jakob ;
Chakthranont, Pongkarn ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2014, 4 (11) :3957-3971