A Computational Study on the Electronic Transport Properties of Ultranarrow Disordered Zigzag Graphene Nanoribbons

被引:16
作者
Djavid, Nima [1 ]
Khaliji, Kaveh [1 ]
Tabatabaei, Seyed Mohammad [1 ]
Pourfath, Mahdi [1 ,2 ]
机构
[1] Univ Tehran, Dept Elect & Comp Engn, Tehran 14395515, Iran
[2] Vienna Univ Technol, Inst Microelect, A-1040 Vienna, Austria
关键词
Line-edge roughness (LER); mean-field Hubbard model; nonequilibrium Green's function (NEGF) formalism; single atom vacancy; substrate charged impurities; zigzag graphene nanoribbons (ZGNRs); STATE;
D O I
10.1109/TED.2013.2290773
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the effect of structural nonidealities on the electronic transport properties of ultranarrow zigzag graphene nanoribbons (ZGNRs) is systemically investigated for the first time, employing the nonorthogonal third nearest neighbor mean-field Hubbard model along with the nonequilibrium Green's function formalism. We have evaluated the influence of line-edge roughness, single atom vacancies, and substrate-induced potential fluctuations on the transport gap, ON- and OFF-state conductances, and the ON/OFF conductance ratio of 12-nm-length ultranarrow ZGNRs. The results reveal that while even moderate amounts of edge roughness lead to a nonuniform suppression of the transmission probability and increase the transport gap, the presence of single atom vacancies tends to decrease the induced transport gap. Furthermore, it is shown that the transport properties of ZGNRs are more robust against potential fluctuations compared with their armchair counterparts.
引用
收藏
页码:23 / 29
页数:7
相关论文
共 36 条
[1]   Multidimensional modeling of nanotransistors [J].
Anantram, M. P. ;
Svizhenko, A. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2007, 54 (09) :2100-2115
[2]  
[Anonymous], 2011, INT TECHNOLOGY ROADM
[3]   Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects [J].
Areshkin, Denis A. ;
Gunlycke, Daniel ;
White, Carter T. .
NANO LETTERS, 2007, 7 (01) :204-210
[4]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P655, DOI [10.1038/NNANO.2010.154, 10.1038/nnano.2010.154]
[5]   Intraribbon Heterojunction Formation in Ultranarrow Graphene Nanoribbons [J].
Blankenburg, Stephan ;
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Passerone, Daniele ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman ;
Pignedoli, Carlo A. .
ACS NANO, 2012, 6 (03) :2020-2025
[6]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[7]   Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons [J].
Evaldsson, M. ;
Zozoulenko, I. V. ;
Xu, Hengyi ;
Heinzel, T. .
PHYSICAL REVIEW B, 2008, 78 (16)
[8]   Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering [J].
Fang, Tian ;
Konar, Aniruddha ;
Xing, Huili ;
Jena, Debdeep .
PHYSICAL REVIEW B, 2008, 78 (20)
[9]   Magnetism of finite graphene samples: Mean-field theory compared with exact diagonalization and quantum Monte Carlo simulations [J].
Feldner, Helene ;
Meng, Zi Yang ;
Honecker, Andreas ;
Cabra, Daniel ;
Wessel, Stefan ;
Assaad, Fakher F. .
PHYSICAL REVIEW B, 2010, 81 (11)
[10]   Peculiar localized state at zigzag graphite edge [J].
Fujita, M ;
Wakabayashi, K ;
Nakada, K ;
Kusakabe, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) :1920-1923