Periodic solutions of the third order functional differential equations

被引:10
作者
Zhang, ZQ [1 ]
Wang, ZC [1 ]
机构
[1] Hunan Univ, Dept Appl Math, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
functional differential equation; periodic solution; coincidence degree; continuation theorem;
D O I
10.1016/j.jmaa.2003.11.059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain sufficient conditions for the existence of periodic solutions of the following third order nonlinear functional differential equations x'''(t) + ax''(2k-1) (t) + bx'(2k-1) (t) + x(2k-1) (t) + g (t, x(t - tau(1)), x'(t - tau(2))) = p(t) = p(t + 2pi). Our approach is based on the continuation theorem of the coincidence degree, and the a priori estimate of periodic solutions. (C) 2004 Published by Elsevier Inc.
引用
收藏
页码:115 / 134
页数:20
相关论文
共 14 条
[1]   ON THE APPLICATIONS OF THE FREQUENCY-DOMAIN METHOD FOR UNIFORMLY DISSIPATIVE NONLINEAR-SYSTEMS [J].
AFUWAPE, AU .
MATHEMATISCHE NACHRICHTEN, 1987, 130 :217-224
[2]   FREQUENCY-DOMAIN APPROACH TO NONLINEAR OSCILLATIONS OF SOME 3RD-ORDER DIFFERENTIAL-EQUATIONS [J].
AFUWAPE, AU .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (12) :1459-1470
[3]   NONLINEAR PERTURBATIONS OF DIFFERENTIAL-OPERATORS WITH NONTRIVIAL KERNEL AND APPLICATIONS TO 3RD-ORDER PERIODIC BOUNDARY-VALUE PROBLEMS [J].
AFUWAPE, AU ;
OMARI, P ;
ZANOLIN, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 143 (01) :35-56
[4]  
AFUWAPE AU, 1984, AN STINT U AI I CUZA, V30, P31
[5]  
AMANN H, 1973, APPL ANAL, V2, P385
[6]  
Barbalat I., 1974, REV ROUM SCI TECHN E, V29, p321
[7]   SOME MATHEMATICS OF BIOLOGICAL OSCILLATIONS [J].
CRONIN, J .
SIAM REVIEW, 1977, 19 (01) :100-138
[8]  
EZEILO JOC, 1960, P CAMBRIDGE PHILOS S, V56, P381
[9]  
Hale H., 1969, Ordinary differential equations
[10]  
Lefschetz J., 1961, STABILITY LYAPUNOVS