Controlling of physicochemical properties of nickel-substituted MCM-41 by adjustment of the synthesis solution pH and tetramethylammonium silicate concentration

被引:15
作者
Yang, YH [1 ]
Lim, S [1 ]
Du, GA [1 ]
Wang, CA [1 ]
Ciuparu, D [1 ]
Chen, Y [1 ]
Haller, GL [1 ]
机构
[1] Yale Univ, Dept Chem Engn, New Haven, CT 06520 USA
关键词
D O I
10.1021/jp054255g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of initial synthesis solution pH and tetramethylammonium silicate concentration in the synthesis solution on the physical and chemical properties of MCM-41 was systematically investigated using N-2 physisorption, X-ray diffraction, temperature-programmed reduction, in situ Fourier transform IR, UV-vis, and X-ray absorption spectroscopies. pH and tetramethylammonium (TMA) fraction affect the porosity of MCM-41 and the reducibility of incorporated Ni cations; higher pH and TMA concentration produced more porosity with higher stability against reduction, which is attributed to more metal ions locating in the interior of the silica walls. The control of the pore diameter of mesoporous MCM-41 at the sub-nanometer scale may be accomplished by adjusting the pH and TMA fraction. pH may be used to control the surface free silanol group density and nickel reduction degree as well, and this is useful in the design of a specific catalyst for particular reactions, such as CO methanation, which requires highly dispersed. stable metallic clusters with controllable size.
引用
收藏
页码:5927 / 5935
页数:9
相关论文
共 29 条
[1]   Synthesis, characterization, and stability of Fe-MCM-41 for production of carbon nanotubes by acetylene pyrolysis [J].
Amama, PB ;
Lim, S ;
Ciuparu, D ;
Yang, YH ;
Pfefferle, L ;
Haller, GL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (07) :2645-2656
[2]   Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure [J].
Ankudinov, AL ;
Ravel, B ;
Rehr, JJ ;
Conradson, SD .
PHYSICAL REVIEW B, 1998, 58 (12) :7565-7576
[3]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[4]   A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES [J].
BECK, JS ;
VARTULI, JC ;
ROTH, WJ ;
LEONOWICZ, ME ;
KRESGE, CT ;
SCHMITT, KD ;
CHU, CTW ;
OLSON, DH ;
SHEPPARD, EW ;
MCCULLEN, SB ;
HIGGINS, JB ;
SCHLENKER, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (27) :10834-10843
[5]   Optimal parameters for the synthesis of the mesoporous molecular sieve [Si]-MCM-41 [J].
Cheng, CF ;
Park, DH ;
Klinowski, J .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1997, 93 (01) :193-197
[6]   Diffuse wall structure and narrow mesopores in highly crystalline MCM-41 materials studied by X-ray diffraction [J].
Edler, KJ ;
Reynolds, PA ;
White, JW ;
Cookson, D .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1997, 93 (01) :199-202
[7]  
Kalipcilar H, 2000, CRYST RES TECHNOL, V35, P933, DOI 10.1002/1521-4079(200008)35:8<933::AID-CRAT933>3.0.CO
[8]  
2-I
[9]  
KRESGE CT, 1992, NATURE, V359, P10
[10]   Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements [J].
Kruk, M ;
Jaroniec, M ;
Sayari, A .
LANGMUIR, 1997, 13 (23) :6267-6273