Inductive database to support iterative data mining: Application to biomarker analysis on patient data in the Fight-HF project

被引:2
作者
Bresso, Emmanuel [1 ,2 ]
Ferreira, Joao-Pedro [2 ]
Girerd, Nicolas [2 ]
Kobayashi, Masatake [2 ]
Preud'homme, Gregoire [2 ]
Rossignol, Patrick [2 ]
Zannad, Fayez [2 ]
Devignes, Marie-Dominique [1 ]
Smail-Tabbone, Malika [1 ]
机构
[1] Univ Lorraine, CNRS, Inria Nancy GE, LORIA,UMR 7503, Vandoeuvre Les Nancy, France
[2] Univ Lorraine, Ctr Invest Clin Plurithemat 1433, INSERM 1116, CHRU Nancy, Nancy, France
关键词
Inductive database; Data mining; Heart Failure; Biomarkers; Knowledge Discovery from Data (KDD); RATIONALE; MODELS;
D O I
10.1016/j.jbi.2022.104212
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Machine learning is now an essential part of any biomedical study but its integration into real effective Learning Health Systems, including the whole process of Knowledge Discovery from Data (KDD), is not yet realised. We propose an original extension of the KDD process model that involves an inductive database. We designed for the first time a generic model of Inductive Clinical DataBase (ICDB) aimed at hosting both patient data and learned models. We report experiments conducted on patient data in the frame of a project dedicated to fight heart failure. The results show how the ICDB approach allows to identify biomarker combinations, specific and predictive of heart fibrosis phenotype, that put forward hypotheses relative to underlying mechanisms. Two main scenarios were considered, a local-to-global KDD scenario and a trans-cohort alignment scenario. This promising proof of concept enables us to draw the contours of a next-generation Knowledge Discovery Environment (KDE).
引用
收藏
页数:11
相关论文
共 37 条
  • [1] [Anonymous], 2017, Nucleic Acids Res, V45, pD158, DOI [DOI 10.1093/nar/gkh131, DOI 10.1093/NAR/GKAA1100, 10.1093/nar/gkh131]
  • [2] [Anonymous], 2008, LeGo
  • [3] Berthold M.R., 2009, ACM SIGKDD Explor. Newsl., V11, P26
  • [4] Boulicaut J.-F., 1999, Data Warehousing and Knowledge Discovery. First International Conference, DaWaK'99. Proceedings (Lecture Notes in Computer Science Vol.1676), P293
  • [5] Novel biomarkers for patient stratification in colorectal cancer: A review of definitions, emerging concepts, and data
    Chand, Manish
    Keller, Deborah S.
    Mirnezami, Reza
    Bullock, Marc
    Bhangu, Aneel
    Moran, Brendan
    Tekkis, Paris P.
    Brown, Gina
    Mirnezami, Alex
    Berho, Mariana
    [J]. WORLD JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2018, 10 (07) : 145 - 158
  • [6] Chasseur C., 2013, WebDB, V13, P14
  • [7] Concept Drift Detection and Localization in Process Mining An Integrated and Efficient Approach Enabled by Trace Clustering
    de Sousa, Rafael Gaspar
    Peres, Sarajane Marques
    Fantinato, Marcelo
    Reijers, Hajo Alexander
    [J]. 36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 364 - 373
  • [8] Evans R S, 2016, Yearb Med Inform, VSuppl 1, pS48, DOI 10.15265/IYS-2016-s006
  • [9] The Reactome Pathway Knowledgebase
    Fabregat, Antonio
    Jupe, Steven
    Matthews, Lisa
    Sidiropoulos, Konstantinos
    Gillespie, Marc
    Garapati, Phani
    Haw, Robin
    Jassal, Bijay
    Korninger, Florian
    May, Bruce
    Milacic, Marija
    Roca, Corina Duenas
    Rothfels, Karen
    Sevilla, Cristoffer
    Shamovsky, Veronica
    Shorser, Solomon
    Varusai, Thawfeek
    Viteri, Guilherme
    Weiser, Joel
    Wu, Guanming
    Stein, Lincoln
    Hermjakob, Henning
    D'Eustachio, Peter
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) : D649 - D655
  • [10] Circulating plasma proteins and new-onset diabetes in a population-based study: proteomic and genomic insights from the STANISLAS cohort
    Ferreira, Joao Pedro
    Lamiral, Zohra
    Xhaard, Constance
    Duarte, Kevin
    Bresso, Emmanuel
    Devignes, Marie-Dominique
    Le Floch, Edith
    Roulland, Claire Dandine
    Deleuze, Jean-Francois
    Wagner, Sandra
    Guerci, Bruno
    Girerd, Nicolas
    Zannad, Faiez
    Boivin, Jean-Marc
    Rossignol, Patrick
    [J]. EUROPEAN JOURNAL OF ENDOCRINOLOGY, 2020, 183 (03) : 285 - 295