NADPH Oxidases in Heart Failure: Poachers or Gamekeepers?

被引:170
作者
Zhang, Min [1 ]
Perino, Alessia [2 ]
Ghigo, Alessandra [2 ]
Hirsch, Emilio [2 ]
Shah, Ajay M. [1 ]
机构
[1] Kings Coll London, Cardiovasc Div, James Black Ctr, British Heart Fdn Ctr Excellence, London SE5 9NU, England
[2] Univ Turin, Ctr Mol Biotechnol, Dept Genet Biol & Biochem, Turin, Italy
关键词
INDUCED CARDIAC DYSFUNCTION; SIGNAL-REGULATING KINASE-1; NUCLEOTIDE EXCHANGE FACTOR; RESPIRATORY BURST OXIDASE; MESSENGER-RNA EXPRESSION; ANGIOTENSIN-II; NAD(P)H OXIDASE; OXIDATIVE STRESS; MYOCARDIAL-INFARCTION; ATRIAL-FIBRILLATION;
D O I
10.1089/ars.2012.4550
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Significance: Oxidative stress is involved in the pathogenesis of heart failure but clinical antioxidant trials have been unsuccessful. This may be because effects of reactive oxygen species (ROS) depend upon their source, location, and concentration. Nicotinamide adenine dinucleotide phosphate oxidase (Nox) proteins generate ROS in a highly regulated fashion and modulate several components of the heart failure phenotype. Recent Advances: Two Nox isoforms, Nox2 and Nox4, are expressed in the heart. Studies using gene-modified mice deficient in Nox2 activity indicate that Nox2 activation contributes to angiotensin II-induced cardiomyocyte hypertrophy, atrial fibrillation, and the development of interstitial fibrosis but may also positively modulate physiological excitation-contraction coupling. Nox2 contributes to myocyte death under stress situations and plays important roles in postmyocardial infarction remodeling, in part by modulating matrix metalloprotease activity. In contrast to Nox2, Nox4 is constitutively active at a low level and induces protective effects in the heart under chronic stress, for example, by maintaining myocardial capillary density. However, high levels of Nox4 could have detrimental effects. Critical Issues: The effects of Nox proteins during the development of heart failure likely depend upon the isoform, activation level, and cellular distribution, and may include beneficial as well as detrimental effects. More needs to be learnt about the precise regulation of abundance and biochemical activity of these proteins in the heart as well as the downstream signaling pathways that they regulate. Future Directions: The development of specific approaches to target individual Nox isoforms and/or specific cell types may be important for the achievement of therapeutic efficacy in heart failure. Antioxid. Redox Signal. 18, 1024-1041.
引用
收藏
页码:1024 / 1041
页数:18
相关论文
共 220 条
[1]   ACTIVATION OF THE NADPH OXIDASE INVOLVES THE SMALL GTP-BINDING PROTEIN P21RAC1 [J].
ABO, A ;
PICK, E ;
HALL, A ;
TOTTY, N ;
TEAHAN, CG ;
SEGAL, AW .
NATURE, 1991, 353 (6345) :668-670
[2]   Role of Rac1 GTPase activation in atrial fibrillation [J].
Adam, Oliver ;
Frost, Gregg ;
Custodis, Florian ;
Sussman, Mark A. ;
Schaefers, Hans-Joachim ;
Boehm, Michael ;
Laufs, Ulrich .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2007, 50 (04) :359-367
[3]   Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase [J].
Ago, T ;
Kitazono, T ;
Ooboshi, H ;
Iyama, T ;
Han, YH ;
Takada, J ;
Wakisaka, M ;
Ibayashi, S ;
Utsumi, H ;
Iida, M .
CIRCULATION, 2004, 109 (02) :227-233
[4]   Upregulation of Nox4 by Hypertrophic Stimuli Promotes Apoptosis and Mitochondrial Dysfunction in Cardiac Myocytes [J].
Ago, Tetsuro ;
Kuroda, Junya ;
Pain, Jayashree ;
Fu, Cexiong ;
Li, Hong ;
Sadoshima, Junichi .
CIRCULATION RESEARCH, 2010, 106 (07) :1253-U183
[5]   Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals [J].
Aguirre, Jesus ;
Lambeth, J. David .
FREE RADICAL BIOLOGY AND MEDICINE, 2010, 49 (09) :1342-1353
[6]   NADPH oxidase signaling and cardiac myocyte function [J].
Akki, Ashwin ;
Zhang, Min ;
Murdoch, Colin ;
Brewer, Alison ;
Shah, Ajay M. .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2009, 47 (01) :15-22
[7]   Statin use is associated with a reduction in atrial fibrillation after noncardiac thoracic surgery independent of C-reactive protein [J].
Amar, D ;
Zhang, H ;
Heerdt, PM ;
Park, B ;
Fleisher, M ;
Thaler, HT .
CHEST, 2005, 128 (05) :3421-3427
[8]   Nox4 and Nox2 NADPH oxidases mediate distinct cellular redox signaling responses to agonist stimulation [J].
Anilkumar, Narayana ;
Weber, Roberta ;
Zhang, Min ;
Brewer, Alison ;
Shah, Ajay M. .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2008, 28 (07) :1347-1354
[9]   Redox sensitive signaling pathways in cardiac remodeling, hypertrophy and failure [J].
Anilkumar, Narayana ;
Sirker, Alexander ;
Shah, Ajay M. .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2009, 14 :3168-3187
[10]   Redox-optimized ROS balance: A unifying hypothesis [J].
Aon, M. A. ;
Cortassa, S. ;
O'Rourke, B. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2010, 1797 (6-7) :865-877