Integration of a broad beam ion source with a high-temperature x-ray diffraction vacuum chamber

被引:18
作者
Manova, D. [1 ]
Bergmann, A. [1 ]
Maendl, S. [1 ]
Neumann, H. [1 ]
Rauschenbach, B. [1 ]
机构
[1] Leibniz Inst Oberflachenmodifizierung eV, D-04318 Leipzig, Germany
关键词
AUSTENITIC STAINLESS-STEEL; IN-SITU; LOW-ENERGY; AISI; 304L; IMPLANTATION; NITROGEN; DIFFUSION; CARBON; FLUX;
D O I
10.1063/1.4765703
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Here, the integration of a low energy, linearly variable ion beam current density, mechanically in situ adjustable broad beam ion source with a high-temperature x-ray diffraction (XRD) vacuum chamber is reported. This allows in situ XRD investigation of phase formation and evolution processes induced by low energy ion implantation. Special care has been taken to an independent adjustment of the ion beam for geometrical directing towards the substrate, a 15 mm small ion source exit aperture to avoid a secondary sputter process of the chamber walls, linearly variable ion current density by using a pulse length modulation (PLM) for the accelerating voltages without changing the ion beam density profile, nearly homogeneous ion beam distribution over the x-ray footprint, together with easily replaceable Kapton (R) windows for x-rays entry and exit. By combining a position sensitive x-ray detector with this PLM-modulated ion beam, a fast and efficient time resolved investigation of low energy implantation processes is obtained in a compact experimental setup. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4765703]
引用
收藏
页数:8
相关论文
共 25 条
[1]   Flux effect on the ion-beam nitriding of austenitic stainless-steel AISI 304L -: art. no. 124906 [J].
Abrasonis, G ;
Rivière, JP ;
Templier, C ;
Pranevicius, L ;
Barradas, NP .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (12)
[2]   Metal plasma immersion ion implantation and deposition: a review [J].
Anders, A .
SURFACE & COATINGS TECHNOLOGY, 1997, 93 (2-3) :158-167
[3]   Current status of supersaturated surface engineered S-phase materials [J].
Bell, Thomas .
SURFACE ENGINEERING (ICSE 2007), 2008, 373-374 :289-295
[4]   Plasma-based ion implantation utilising a cathodic arc plasma [J].
Bilek, MMM ;
McKenzie, DR ;
Tarrant, RN ;
Lim, SHM ;
McCulloch, DG .
SURFACE & COATINGS TECHNOLOGY, 2002, 156 (1-3) :136-142
[5]   Structure and composition of expanded austenite produced by nitrogen plasma immersion ion implantation of stainless steels X6CrNiTi1810 and X2CrNiMoN2253 [J].
Blawert, C ;
Mordike, BL ;
Jirásková, Y ;
Schneeweiss, O .
SURFACE & COATINGS TECHNOLOGY, 1999, 116 :189-198
[6]   In situ characterization of phase formation during high-energy oxygen ion implantation in molybdenum [J].
Bohne, Y ;
Shevchenko, N ;
Prokert, F ;
von Borany, J ;
Rauschenbach, B ;
Möller, W .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2005, 240 (1-2) :157-161
[7]   In situ X-ray diffraction investigations during high-energy oxygen ion implantation in transition metals [J].
Bohne, Y ;
Shevchenko, N ;
Prokert, F ;
von Borany, J ;
Rauschenbach, B ;
Möller, W .
VACUUM, 2004, 76 (2-3) :281-285
[8]   In situ XRD measurements during plasma nitriding of a medium carbon steel [J].
Clarke, TGR ;
Rocha, AD ;
Reguly, A ;
Hirsch, T .
SURFACE & COATINGS TECHNOLOGY, 2005, 194 (2-3) :283-289
[9]   Fundamental and Innovations in Plasma Assisted Diffusion of Nitrogen and Carbon in Austenitic Stainless Steels and Related Alloys [J].
Czerwiec, Thierry ;
He, Huan ;
Marcos, Gregory ;
Thiriet, Tony ;
Weber, Sylvain ;
Michel, Henri .
PLASMA PROCESSES AND POLYMERS, 2009, 6 (6-7) :401-409
[10]   Generation of a pulsed ion beam with a tuned electronic beam switch [J].
Dienelt, J ;
Zimmer, K ;
Scholze, F ;
Dathe, B ;
Neumann, H .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2003, 12 (03) :489-494