A novel smooth and discontinuous oscillator with strong irrational nonlinearities

被引:51
作者
Han YanWei [1 ]
Cao QingJie [1 ,2 ]
Chen YuShu [1 ]
Wiercigroch, Marian [3 ]
机构
[1] Harbin Inst & Technol, Sch Astronaut, Harbin 150001, Peoples R China
[2] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
[3] Univ Aberdeen, Kings Coll, Sch Engn, Ctr Appl Dynam Res, Aberdeen AB24 3UE, Scotland
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2012年 / 55卷 / 10期
基金
中国国家自然科学基金;
关键词
irrational nonlinearity; multiple well dynamics; singular closed orbits; Melnikov method; ARCHETYPAL OSCILLATOR; DYNAMICS; SYSTEM; BIFURCATIONS; STABILITY;
D O I
10.1007/s11433-012-4880-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we propose a novel nonlinear oscillator with strong irrational nonlinearities having smooth and discontinuous characteristics depending on the values of a smoothness parameter. The oscillator is similar to the SD oscillator, originally introduced in Phys Rev E 69(2006). The equilibrium stability and the complex bifurcations of the unperturbed system are investigated. The bifurcation sets of the equilibria in parameter space are constructed to demonstrate transitions in the multiple well dynamics for both smooth and discontinuous regimes. The Melnikov method is employed to obtain the analytical criteria of chaotic thresholds for the singular closed orbits of homoclinic, homo-heteroclinic, cuspidal heteroclinic and tangent homoclinic orbits of the perturbed system.
引用
收藏
页码:1832 / 1843
页数:12
相关论文
共 33 条
[11]  
Chen Y S, 1995, SCI CHINA SER A, V38, P1287
[12]   Three-dimensional lumped mass/lumped spring modeling and nonlinear behavior of a levitated droplet [J].
Dupac, M ;
Beale, DG ;
Overfelt, RA .
NONLINEAR DYNAMICS, 2005, 42 (01) :25-42
[13]  
FEODOSEV VI, 1980, SELECTED PROBLEMS EN
[14]   Chaotic dynamics of falling disks [J].
Field, SB ;
Klaus, M ;
Moore, MG ;
Nori, F .
NATURE, 1997, 388 (6639) :252-254
[15]   Integrability, degenerate centers, and limit cycles for a class of polynomial differential systems [J].
Gine, J. ;
Llibre, J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (9-10) :1453-1462
[16]  
Golubitsky M, 1985, Singularities and Groups in Bifurcation Theory
[17]  
Gulyev V I, 1989, APPL PROBLEMS THEORY
[18]   Limit cycle bifurcations by perturbing a cuspidal loop in a Hamiltonian system [J].
Han, Maoan ;
Zang, Hong ;
Yang, Junmin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) :129-163
[19]  
KAPER HG, 1961, APPL SCI RES A, V10, P369
[20]   Application of a generalized Senator-Bapat perturbation technique to nonlinear dynamical systems with an irrational restoring force [J].
Lai, S. K. ;
Xiang, Y. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (07) :2078-2086