A novel smooth and discontinuous oscillator with strong irrational nonlinearities

被引:51
作者
Han YanWei [1 ]
Cao QingJie [1 ,2 ]
Chen YuShu [1 ]
Wiercigroch, Marian [3 ]
机构
[1] Harbin Inst & Technol, Sch Astronaut, Harbin 150001, Peoples R China
[2] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
[3] Univ Aberdeen, Kings Coll, Sch Engn, Ctr Appl Dynam Res, Aberdeen AB24 3UE, Scotland
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2012年 / 55卷 / 10期
基金
中国国家自然科学基金;
关键词
irrational nonlinearity; multiple well dynamics; singular closed orbits; Melnikov method; ARCHETYPAL OSCILLATOR; DYNAMICS; SYSTEM; BIFURCATIONS; STABILITY;
D O I
10.1007/s11433-012-4880-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we propose a novel nonlinear oscillator with strong irrational nonlinearities having smooth and discontinuous characteristics depending on the values of a smoothness parameter. The oscillator is similar to the SD oscillator, originally introduced in Phys Rev E 69(2006). The equilibrium stability and the complex bifurcations of the unperturbed system are investigated. The bifurcation sets of the equilibria in parameter space are constructed to demonstrate transitions in the multiple well dynamics for both smooth and discontinuous regimes. The Melnikov method is employed to obtain the analytical criteria of chaotic thresholds for the singular closed orbits of homoclinic, homo-heteroclinic, cuspidal heteroclinic and tangent homoclinic orbits of the perturbed system.
引用
收藏
页码:1832 / 1843
页数:12
相关论文
共 33 条
[1]  
[Anonymous], 1978, THEORY NONLINEAR LAT
[2]   Structural stability of multi-folding structures with contact problem [J].
Ario, Ichiro ;
Watson, Andrew .
JOURNAL OF SOUND AND VIBRATION, 2009, 324 (1-2) :263-282
[3]  
Avramov KV, 2004, J VIB CONTROL, V10, P291, DOI [10.1177/107754604773732197, 10.1177/1077546304035604]
[4]   Mesoscopic fabric models using a discrete mass-spring approach: Yarn-yarn interactions analysis [J].
Boubaker, BB ;
Haussy, B ;
Ganghoffer, JF .
JOURNAL OF MATERIALS SCIENCE, 2005, 40 (22) :5925-5932
[5]   The "click" mechanism in dipteran flight: if it exists, then what effect does it have? [J].
Brennan, MJ ;
Elliott, SJ ;
Bonello, P ;
Vincent, JFV .
JOURNAL OF THEORETICAL BIOLOGY, 2003, 224 (02) :205-213
[6]   A Rotating Pendulum Linked by an Oblique Spring [J].
Cao Qing-Jie ;
Han Ning ;
Tian Rui-Lan .
CHINESE PHYSICS LETTERS, 2011, 28 (06)
[7]   The limit case response of the archetypal oscillator for smooth and discontinuous dynamics [J].
Cao, Qingjie ;
Wiercigroch, Marian ;
Pavlovskaia, Ekaterina E. ;
Grebogi, Celso ;
Thompson, J. Michael T. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2008, 43 (06) :462-473
[8]   Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics [J].
Cao, Qingjie ;
Wiercigroch, Marian ;
Pavlovskaia, Ekaterina E. ;
Michael, J. ;
Thompson, T. ;
Grebogi, Celso .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1865) :635-652
[9]   Archetypal oscillator for smooth and discontinuous dynamics [J].
Cao, Qingjie ;
Wiercigroch, Marian ;
Pavlovskaia, Ekaterina E. ;
Grebogi, Celso ;
Thompson, J. Michael T. .
PHYSICAL REVIEW E, 2006, 74 (04)
[10]  
Cao QJ, 2011, J APPL ANAL COMPUT, V1, P183