Quasi-Einstein metrics and plane waves

被引:1
作者
Brozos-Vazquez, M. [1 ]
Garcia-Rio, E. [2 ]
Gavino-Fernandez, S. [2 ]
机构
[1] Univ A Coruna, Dept Math, La Coruna, Spain
[2] Univ Santiago Compostela, Dept Geometry & Topol, Santiago, Spain
来源
XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS | 2012年 / 1460卷
关键词
Quasi-Einstein manifold; pp-wave; plane wave; Cahen-Wallach symmetric space; PSEUDO-RIEMANNIAN MANIFOLDS; LORENTZIAN MANIFOLDS;
D O I
10.1063/1.4733376
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Quasi-Einstein metrics on pp-waves are discussed, with special attention to plane waves. In particular, it is shown that indecomposable Lorentzian symmetric spaces and homogeneous Lorentzian spaces whose null geodesics are canonically homogeneous are quasi-Einstein manifolds.
引用
收藏
页码:174 / 179
页数:6
相关论文
共 12 条
[1]   Two-symmetric Lorentzian manifolds [J].
Alekseevsky, Dmitri V. ;
Galaev, Anton S. .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (12) :2331-2340
[2]   Degenerate homogeneous structures of type S1 on pseudo-Riemannian manifolds [J].
Amilibia, AM .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2001, 31 (02) :561-579
[3]   Ricci solitons on Lorentzian manifolds with large isometry groups [J].
Batat, W. ;
Brozos-Vazquez, M. ;
Garcia-Rio, E. ;
Gavino-Fernandez, S. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :1219-1227
[4]   Homogeneous pseudo-Riemannian structures of linear type [J].
Batat, Wafaa ;
Gadea, Pedro M. ;
Oubina, Jose A. .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (03) :745-764
[5]   Locally Conformally Flat Lorentzian Gradient Ricci Solitons [J].
Brozos-Vazquez, M. ;
Garcia-Rio, E. ;
Gavino-Fernandez, S. .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) :1196-1212
[6]  
Brozos-Vazquez M., LOCALLY CONFORMALLY
[7]  
Brozos-Vazquez M., 2009, Synthesis Lectures on Mathematics and Statistics, V5
[8]  
Cahen M., 1990, Journal of Geometry and Physics, V7, P571, DOI 10.1016/0393-0440(90)90007-P
[9]   On general plane fronted waves.: Geodesics [J].
Candela, AM ;
Flores, JL ;
Sánchez, M .
GENERAL RELATIVITY AND GRAVITATION, 2003, 35 (04) :631-649
[10]   Singularity theorems and the Lorentzian splitting theorem for the Bakry-Emery-Ricci tensor [J].
Case, Jeffrey S. .
JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (03) :477-490