Remark on stabilization of tree-shaped networks of strings

被引:37
作者
Ammari, Kais [1 ]
Jellouli, Mohamed [1 ]
机构
[1] Fac Sci Monastir, Dept Math, Monastir 5019, Tunisia
关键词
networks of strings; input-output map; well-posed system;
D O I
10.1007/s10492-007-0018-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a tree-shaped network of vibrating elastic strings, with feedback acting on the root of the tree. Using the d'Alembert representation formula, we show that the input-output map is bounded, i.e. this system is a well-posed system in the sense of G. Weiss (Trans. Am. Math. Soc. 342 (1994), 827-854). As a consequence we prove that the strings networks are not exponentially stable in the energy space. Moreover, we give explicit polynomial decay estimates valid for regular initial data.
引用
收藏
页码:327 / 343
页数:17
相关论文
共 14 条
[1]   Stabilization of second order evolution equations by a class of unbounded feedbacks [J].
Ammari, K ;
Tucsnak, M .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2001, 6 (14) :361-386
[2]  
Ammari K, 2004, DIFFER INTEGRAL EQU, V17, P1395
[3]   Stabilization of generic trees of strings [J].
Ammart, K ;
Jellouli, M ;
Khenissi, M .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2005, 11 (02) :177-193
[4]   Observation and control of vibrations in tree-shaped networks of strings [J].
Dáger, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (02) :590-623
[5]   Controllability of tree-shaped networks of vibrating strings [J].
Dáger, R ;
Zuazua, E .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (12) :1087-1092
[6]  
Dager R., 2006, Wave Propagation, Observation and Control in 1-D Flexible MultiStructures, V50
[7]  
Lagnese J., 1994, MODELING ANAL DYNAMI
[8]  
LASIECKA I, 1986, J MATH PURE APPL, V65, P92
[9]  
Lions J. L., 1983, Controle des systemes distribues singuliers
[10]  
Lions J. L., 1968, PROBLEMES LIMITES NO