CLASSICAL FIELD THEORIES OF FIRST ORDER AND LAGRANGIAN SUBMANIFOLDS OF PREMULTISYMPLECTIC MANIFOLDS

被引:11
作者
Campos, Cedric M. [1 ]
Guzman, Elisa [1 ]
Carlos Marrero, Juan [1 ]
机构
[1] Univ La Laguna, Dept Matemat Fundamental, ULL CSIC Geometria Diferencial & Mecan Geometr, E-38206 Tenerife, Spain
关键词
Field theory; multisymplectic structure; Lagrangian submanifold; Tulczyjew's triple; Euler-Lagrange equation; Hamilton-De Donder-Weyl equation; GEOMETRY; EQUATIONS; SYSTEMS; MAPS;
D O I
10.3934/jgm.2012.4.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A description of classical field theories of first order in terms of Lagrangian submanifolds of premultisymplectic manifolds is presented. For this purpose, a Tulczyjew's triple associated with a fibration is discussed. The triple is adapted to the extended Hamiltonian formalism. Using this triple, we prove that Euler-Lagrange and Hamilton-De Donder-Weyl equations are the local equations defining Lagrangian submanifolds of a premultisymplectic manifold.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 36 条
[31]  
Roman-Roy N., ARXIVMATHPH0602038
[32]   ON THE k-SYMPLECTIC, k-COSYMPLECTIC AND MULTISYMPLECTIC FORMALISMS OF CLASSICAL FIELD THEORIES [J].
Roman-Roy, Narciso ;
Rey, Angel M. ;
Salgado, Modesto ;
Vilarino, Silvia .
JOURNAL OF GEOMETRIC MECHANICS, 2011, 3 (01) :113-137
[33]   Multisymplectic Lagrangian and Hamiltonian Formalisms of Classical Field Theories [J].
Roman-Roy, Narciso .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
[34]  
Tulczyjew W M, 1976, C R ACAD SCI PARIS A, V283, pA15
[35]  
Tulczyjew W.M., 1976, C R ACAD SCI PARIS A, V283, pA675
[36]   A SYMPLECTIC FRAMEWORK OF LINEAR FIELD-THEORIES [J].
TULCZYJEW, WM .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 130 :177-195