CLASSICAL FIELD THEORIES OF FIRST ORDER AND LAGRANGIAN SUBMANIFOLDS OF PREMULTISYMPLECTIC MANIFOLDS

被引:11
作者
Campos, Cedric M. [1 ]
Guzman, Elisa [1 ]
Carlos Marrero, Juan [1 ]
机构
[1] Univ La Laguna, Dept Matemat Fundamental, ULL CSIC Geometria Diferencial & Mecan Geometr, E-38206 Tenerife, Spain
关键词
Field theory; multisymplectic structure; Lagrangian submanifold; Tulczyjew's triple; Euler-Lagrange equation; Hamilton-De Donder-Weyl equation; GEOMETRY; EQUATIONS; SYSTEMS; MAPS;
D O I
10.3934/jgm.2012.4.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A description of classical field theories of first order in terms of Lagrangian submanifolds of premultisymplectic manifolds is presented. For this purpose, a Tulczyjew's triple associated with a fibration is discussed. The triple is adapted to the extended Hamiltonian formalism. Using this triple, we prove that Euler-Lagrange and Hamilton-De Donder-Weyl equations are the local equations defining Lagrangian submanifolds of a premultisymplectic manifold.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 36 条
[1]  
Abraham R., 1978, Foundations of Mechanics
[2]  
[Anonymous], 1989, GEOMETRY JET BUNDLES, DOI DOI 10.1017/CBO9780511526411
[3]   Unambiguous formalism for higher order Lagrangian field theories [J].
Campos, Cedric M. ;
de Leon, Manuel ;
Martin de Diego, David ;
Vankerschaver, Joris .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (47)
[4]  
Campos Cedric M., 2010, THESIS U AUTONOMA MA
[5]   On the geometry of multisymplectic manifolds [J].
Cantrijn, F ;
Ibort, A ;
De León, M .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1999, 66 :303-330
[6]  
Carinena J. F., 1991, Differential Geometry and its Applications, V1, P345, DOI 10.1016/0926-2245(91)90013-Y
[7]  
de Leon M, 1989, N HOLLAND MATH STUDI, V158
[8]  
de Leon M., 1991, P 1 AAR MONT C M C M, P103
[9]   CONSTRAINED TIME-DEPENDENT LAGRANGIAN SYSTEMS AND LAGRANGIAN SUBMANIFOLDS [J].
DELEON, M ;
MARRERO, JC .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (02) :622-644
[10]  
deLeon M, 1996, MATH APPL, V350, P291