HOMOGENIZATION OF HIGH ORDER ELLIPTIC OPERATORS WITH PERIODIC COEFFICIENTS

被引:9
作者
Kukushkin, A. A. [1 ]
Suslina, T. A. [1 ]
机构
[1] St Petersburg State Univ, Univ Skaya Nab 7-9, St Petersburg 199034, Russia
关键词
Periodic differential operators; homogenization; effective operator; corrector; operator error estimates;
D O I
10.1090/spmj/1439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A selfadjoint strongly elliptic operator A(epsilon) of order 2p given by the expression b(D)* g(x/epsilon) b(D), epsilon > 0, is studied in L-2(R-d; C-n). Here g(x) is a bounded and positive definite (m x m)-matrix-valued function on R-d; it is assumed that g(x) is periodic with respect to some lattice. Next, b(D) = Sigma(vertical bar alpha vertical bar=p) b(alpha)D(alpha) is a differential operator of order p with constant coefficients; the b(alpha) are constant (m x n)-matrices. It is assumed that m >= n and that the symbol b(xi) has maximal rank. For the resolvent (A(epsilon) - zeta I)(-1) with zeta is an element of C \ [ 0,infinity), approximations are obtained in the norm of operators in L-2(R-d; C-n) and in the norm of operators acting from L-2(R-d; C-n) to the Sobolev space H-p(R-d; C-n), with error estimates depending on epsilon and zeta.
引用
收藏
页码:65 / 108
页数:44
相关论文
共 16 条
[1]  
Bensoussan Alain, 1978, STUD MATH APPL, V5
[2]  
[Бирман М.Ш. Birman M. Sh.], 2005, [Алгебра и анализ, Algebra i analiz], V17, P1
[3]  
Birman M. Sh., 2006, St. Petersburg Math. J., V17, P745
[4]  
Birman M. Sh., 2007, St. Petersburg Math. J., V18, P857
[5]  
BSu1 M. Sh., 2004, St. Petersburg Math. J., V15, P639
[6]  
Kato T., 1995, PERTURBATION THEORY, DOI [10.1007/978-3-642-66282-9, DOI 10.1007/978-3-642-66282-9, DOI 10.1007/978-3-642-53393-8]
[7]  
Marcinkiewicz J., 1939, STUD MATH, V8, P78
[8]  
MAZYA VG, 1985, MONOGR STUD MATH, V23
[9]  
Pastukhova S. E., 2016, ST PETERSB MATH J+, V28, P204
[10]   Estimates in homogenization of higher-order elliptic operators [J].
Pastukhova, Svetlana E. .
APPLICABLE ANALYSIS, 2016, 95 (07) :1449-1466