A complex study of the fast blue luminescence of oxidized silicon nanocrystals: the role of the core

被引:34
作者
Ondic, Lukas [1 ,2 ,3 ]
Kusova, Katerina [1 ]
Ziegler, Marc [2 ,3 ]
Fekete, Ladislav [4 ]
Gaertnerova, Viera [4 ]
Chab, Vladimir [4 ]
Holy, Vaclav [5 ]
Cibulka, Ondrej [1 ]
Herynkova, Katerina [1 ]
Gallart, Mathieu [2 ,3 ]
Gilliot, Pierre [2 ,3 ]
Hoenerlage, Bernd [2 ,3 ]
Pelant, Ivan [1 ]
机构
[1] Acad Sci Czech Republic, Inst Phys, Vvi, Prague 16253 6, Czech Republic
[2] CNRS, IPCMS, F-67034 Strasbourg, France
[3] Univ Strasbourg, F-67034 Strasbourg, France
[4] Acad Sci Czech Republic, Inst Phys, Vvi, Prague 18221 8, Czech Republic
[5] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague 2, Czech Republic
关键词
POROUS SILICON; QUANTUM DOTS; PHOTOLUMINESCENCE; SI; EMISSION; ORIGIN; RED; OXYGEN;
D O I
10.1039/c3nr06454a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicon nanocrystals (SiNCs) smaller than 5 nm are a material with strong visible photoluminescence (PL). However, the physical origin of the PL, which, in the case of oxide-passivated SiNCs, is typically composed of a slow-decaying red-orange band (S-band) and of a fast-decaying blue-green band (F-band), is still not fully understood. Here we present a physical interpretation of the F-band origin based on the results of an experimental study, in which we combine temperature (4-296 K), temporally (picosecond resolution) and spectrally resolved luminescence spectroscopy of free-standing oxide-passivated SiNCs. Our complex study shows that the F-band red-shifts only by 35 meV with increasing temperature, which is almost 6 times less than the red-shift of the S-band in a similar temperature range. In addition, the F-band characteristic decay time obtained from a stretched-exponential fit decreases only slightly with increasing temperature. These data strongly suggest that the F-band arises from the core-related quasi-direct radiative recombination governed by slowly thermalizing photoholes.
引用
收藏
页码:3837 / 3845
页数:9
相关论文
共 44 条
[1]   A 1.9 EV PHOTOLUMINESCENCE INDUCED BY 4 EV PHOTONS IN HIGH-PURITY WET SYNTHETIC SILICA [J].
ANEDDA, A ;
BONGIOVANNI, G ;
CANNAS, M ;
CONGIU, F ;
MURA, A ;
MARTINI, M .
JOURNAL OF APPLIED PHYSICS, 1993, 74 (11) :6993-6995
[2]  
[Anonymous], SYSTEMS FREQUENCY CU
[3]   In situ passivation and blue luminescence of silicon clusters using a cluster beam/H2O codeposition production method [J].
Brewer, A. ;
von Haeften, K. .
APPLIED PHYSICS LETTERS, 2009, 94 (26)
[4]   SILICON QUANTUM WIRE ARRAY FABRICATION BY ELECTROCHEMICAL AND CHEMICAL DISSOLUTION OF WAFERS [J].
CANHAM, LT .
APPLIED PHYSICS LETTERS, 1990, 57 (10) :1046-1048
[5]  
Cho CH, 2013, NAT PHOTONICS, V7, P285, DOI [10.1038/nphoton.2013.25, 10.1038/NPHOTON.2013.25]
[6]  
Dargys A., 1994, HDB PHYS PROPERTIES
[7]   Chemical Insight into the Origin of Red and Blue Photoluminescence Arising from Freestanding Silicon Nanocrystals [J].
Dasog, Mita ;
Yang, Zhenyu ;
Regli, Sarah ;
Atkins, Tonya M. ;
Faramus, Angelique ;
Singh, Mani P. ;
Muthuswamy, Elayaraja ;
Kauzlarich, Susan M. ;
Tilley, Richard D. ;
Veinot, Jonathan G. C. .
ACS NANO, 2013, 7 (03) :2676-2685
[8]  
de Boer WDAM, 2010, NAT NANOTECHNOL, V5, P878, DOI [10.1038/nnano.2010.236, 10.1038/NNANO.2010.236]
[9]   Time-resolved measurements of optical gain and photoluminescence in silicon nanocrystals [J].
Dohnalova, K. ;
Kusova, K. ;
Cibulka, O. ;
Ondic, L. ;
Pelant, I. .
PHYSICA SCRIPTA, 2010, T141
[10]   White-emitting oxidized silicon nanocrystals: Discontinuity in spectral development with reducing size [J].
Dohnalova, K. ;
Ondic, L. ;
Kusova, K. ;
Pelant, I. ;
Rehspringer, J. L. ;
Mafouana, R. -R. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (05)