A simulation study on classic and robust variable selection in linear regression

被引:6
作者
Çetin, Meral [1 ]
Erar, Aydin
机构
[1] Hacettepe Univ, Fac Sci, Dept Stat, Ankara, Turkey
[2] Mimar Sinan Fine Art Univ, Fac Sci & Letters, Dept Stat, Istanbul, Turkey
关键词
robust variable selection; robust regression; M-estimators; Mallows' Cp and Akaike criteria;
D O I
10.1016/j.amc.2005.09.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In linear regression analysis, outliers often have large influence in the variable selection process. The aim of this study is to select the subsets of independent variables, which explain dependent variables in the presence of outliers and possible departures from the normality assumption of the error distribution in robust regression analysis. We compared robust and classical variable selection. Here, as a classics selection criteria we used Cp, AICC and AICF which we proposed. Besides we used Andrews, Huber and Hampel M-estimators in computing of the robust variable selection criteria. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1629 / 1643
页数:15
相关论文
共 16 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]  
BHANSALI RJ, 1977, BIOMETRIKA, V64, P547, DOI 10.1093/biomet/64.3.547
[3]  
CETIN M, 2000, THESIS U HACETTEPE
[4]  
Hampel F., 1983, P 44 SESS ISI 2 MADR, V2, P767
[5]  
Hampel F. R., 1986, ROBUST STAT APPROACH
[6]  
Hoaglin D. C., 1983, Understanding robust and exploratory data anlysis
[7]   MODEL SELECTION FOR LEAST ABSOLUTE DEVIATIONS REGRESSION IN SMALL SAMPLES [J].
HURVICH, CM ;
TSAI, CL .
STATISTICS & PROBABILITY LETTERS, 1990, 9 (03) :259-265
[8]  
HURVICH CM, 1989, BIOMETRIKA, V76, P297, DOI 10.2307/2336663
[9]  
Linhart H., 1986, MODEL SELECTION
[10]   SOME COMMENTS ON CP [J].
MALLOWS, CL .
TECHNOMETRICS, 1973, 15 (04) :661-675