Global solutions of nonlinear wave equations with large data

被引:15
作者
Yang, Shiwu [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DPMMS, Cambridge CB3 0WA, England
来源
SELECTA MATHEMATICA-NEW SERIES | 2015年 / 21卷 / 04期
关键词
Large data; Global solutions; Semilinear wave equations; EXISTENCE; TIME; SINGULARITIES; SYSTEMS; MAPS;
D O I
10.1007/s00029-014-0176-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a criterion on the Cauchy data for the semilinear wave equations satisfying the null condition in such that the data can be arbitrarily large, while the solution is still globally in time in the future.
引用
收藏
页码:1405 / 1427
页数:23
相关论文
共 37 条
[1]   GLOBAL-SOLUTIONS OF NONLINEAR HYPERBOLIC-EQUATIONS FOR SMALL INITIAL DATA [J].
CHRISTODOULOU, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (02) :267-282
[2]  
Christodoulou D, 2009, EMS MONOGRAPHS MATH
[3]  
Christodoulou D., 1993, PRINCETON MATH SERIE, V41
[4]   A NEW PHYSICAL-SPACE APPROACH TO DECAY FOR THE WAVE EQUATION WITH APPLICATIONS TO BLACK HOLE SPACETIMES [J].
Dafermos, Mihalis ;
Rodnianski, Igor .
XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, :421-+
[5]   Global existence for a quasilinear wave equation outside of star-shaped domains [J].
Keel, M ;
Smith, HF ;
Sogge, CD .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 189 (01) :155-226
[6]  
Klainerman S, 1996, COMMUN PUR APPL MATH, V49, P307, DOI 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO
[7]  
2-H
[8]   GLOBAL EXISTENCE FOR NON-LINEAR WAVE-EQUATIONS [J].
KLAINERMAN, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (01) :43-101
[9]  
KLAINERMAN S., 1983, P INT C MATH 2 WARS, P1209
[10]  
Klainerman S., 1986, LECTURES APPL MATH, V23, P293