Asymptotics and Monodromy of the Algebraic Spectrum of Quasi-Exactly Solvable Sextic Oscillator

被引:2
作者
Shapiro, Boris [1 ]
Tater, Milos [2 ]
机构
[1] Stockholm Univ, Dept Math, SE-10691 Stockholm, Sweden
[2] Acad Sci, Nucl Phys Inst, Dept Theoret Phys, Rez Near Prague, Czech Republic
关键词
monodromy; spectral surface; spectrum of an harmonic oscillator;
D O I
10.1080/10586458.2017.1325792
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we study numerically and theoretically the asymptotics of the algebraic part of the spectrum for the quasi-exactly solvable sextic potential pi(m, b)(x) = x(6) + 2bx(4) + (b(2) - (4m + 3))x(2), its level crossing points, and its monodromy in the complex plane of parameter b. Here m is a fixed positive integer. We also discuss the connection between the special sequence of quasi-exactly solvable sextics with increasing m and the classical quartic potential.
引用
收藏
页码:16 / 23
页数:8
相关论文
共 21 条
  • [1] Quasi-exactly solvable systems and orthogonal polynomials
    Bender, CM
    Dunne, GV
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (01) : 6 - 11
  • [2] Semiclassical analysis of quasiexact solvability
    Bender, CM
    Dunne, GV
    Moshe, M
    [J]. PHYSICAL REVIEW A, 1997, 55 (04): : 2625 - 2629
  • [3] ANHARMONIC OSCILLATOR
    BENDER, CM
    WU, TT
    [J]. PHYSICAL REVIEW, 1969, 184 (05): : 1231 - &
  • [4] Delabaere E, 1999, ANN I H POINCARE-PHY, V71, P1
  • [5] Emch A., 1918, B AMS, V25, P157
  • [6] EREMENKO A, ARXIV09041714
  • [7] Analytic Continuation of Eigenvalues of a Quartic Oscillator
    Eremenko, Alexandre
    Gabrielov, Andrei
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (02) : 431 - 457
  • [8] The asymptotic zero distribution of orthogonal polynomials with varying recurrence coefficients
    Kuijlaars, ABJ
    Van Assche, W
    [J]. JOURNAL OF APPROXIMATION THEORY, 1999, 99 (01) : 167 - 197
  • [9] NILSSON N, 1965, ARK MAT, V5, P463, DOI DOI 10.1007/BF02591142
  • [10] SALMON G, 1879, TREATISE HIGHER PLAN