Proteome response of two natural strains of Saccharomyces cerevisiae with divergent lignocellulosic inhibitor stress tolerance

被引:19
作者
de Witt, R. N. [1 ]
Kroukamp, H. [2 ]
Volschenk, H. [1 ]
机构
[1] Stellenbosch Univ, Dept Microbiol, De Beer St, ZA-7600 Stellenbosch, Western Cape, South Africa
[2] Macquarie Univ, Dept Mol Sci, Balaclava Rd, N Ryde, NSW 2109, Australia
基金
新加坡国家研究基金会;
关键词
Saccharomyces cerevisiae; shotgun proteomics; lignocellulosic inhibitors; HMF; furfural; acetic acid; coniferyl aldehyde; ETHANOL STRESS; ACETIC-ACID; ALCOHOL-DEHYDROGENASE; PHENOTYPIC ANALYSIS; ABC TRANSPORTER; GENOME SEQUENCE; YEAST TOLERANCE; ORGANIC-ACIDS; WEAK ACIDS; WINE YEAST;
D O I
10.1093/femsyr/foy116
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Strains of Saccharomyces cerevisiae with improved tolerance to plant hydrolysates are of utmost importance for the cost-competitive production of value-added chemicals and fuels. However, engineering strategies are constrained by a lack of understanding of the yeast response to complex inhibitor mixtures. Natural S. cerevisiae isolates display niche-specific phenotypic and metabolic diversity, encoded in their DNA, which has evolved to overcome external stresses, utilise available resources and ultimately thrive in their challenging environments. Industrial and laboratory strains, however, lack these adaptations due to domestication. Natural strains can serve as a valuable resource to mitigate engineering constraints by studying the molecular mechanisms involved in phenotypic variance and instruct future industrial strain improvement to lignocellulosic hydrolysates. We, therefore, investigated the proteomic changes between two natural S. cerevisiae isolates when exposed to a lignocellulosic inhibitor mixture. Comparative shotgun proteomics revealed that isolates respond by regulating a similar core set of proteins in response to inhibitor stress. Furthermore, superior tolerance was linked to NAD(P)/H and energy homeostasis, concurrent with inhibitor and reactive oxygen species detoxification processes. We present several candidate proteins within the redox homeostasis and energy management cellular processes as possible targets for future modification and study. Data are available via ProteomeXchange with identifier PXD010868. Proteomic analysis provides new insight into the complexity of lignocellulosic inhibitor tolerance in natural isolates of S. cerevisiae.
引用
收藏
页数:16
相关论文
共 111 条
[1]   The nature and identification of quantitative trait loci: a community's view [J].
Abiola, O ;
Angel, JM ;
Avner, P ;
Bachmanov, AA ;
Belknap, JK ;
Bennett, B ;
Blankenhorn, EP ;
Blizard, DA ;
Bolivar, V ;
Brockmann, GA ;
Buck, KJ ;
Bureau, JF ;
Casley, WL ;
Chesler, EJ ;
Cheverud, JM ;
Churchill, GA ;
Cook, M ;
Crabbe, JC ;
Crusio, WE ;
Darvasi, A ;
de Haan, G ;
Demant, P ;
Doerge, RW ;
Elliott, RW ;
Farber, CR ;
Flaherty, L ;
Flint, J ;
Gershenfeld, H ;
Gu, JPGJ ;
Gu, WK ;
Himmelbauer, H ;
Hitzemann, R ;
Hsu, HC ;
Hunter, K ;
Iraqi, FA ;
Jansen, RC ;
Johnson, TE ;
Jones, BC ;
Kempermann, G ;
Lammert, F ;
Lu, L ;
Manly, KF ;
Matthews, DB ;
Medrano, JF ;
Mehrabian, M ;
Mittleman, G ;
Mock, BA ;
Mogil, JS ;
Montagutelli, X ;
Morahan, G .
NATURE REVIEWS GENETICS, 2003, 4 (11) :911-916
[2]   Catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products [J].
Adeboye, Peter Temitope ;
Bettiga, Maurizio ;
Aldaeus, Fredrik ;
Larsson, Per Tomas ;
Olsson, Lisbeth .
MICROBIAL CELL FACTORIES, 2015, 14
[3]   The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates [J].
Adeboye, Peter Temitope ;
Bettiga, Maurizio ;
Olsson, Lisbeth .
AMB EXPRESS, 2014, 4 :1-10
[4]   Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae [J].
Al-Saryi, Nadal A. ;
Al-Hejjaj, Murtakab Y. ;
van Roermund, Carlo W. T. ;
Hulmes, Georgia E. ;
Ekal, Lakhan ;
Payton, Chantell ;
Wanders, Ronald J. A. ;
Hettema, Ewald H. .
SCIENTIFIC REPORTS, 2017, 7
[5]   Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae [J].
Allen, Sandra A. ;
Clark, William ;
McCaffery, J. Michael ;
Cai, Zhen ;
Lanctot, Alison ;
Slininger, Patricia J. ;
Liu, Z. Lewis ;
Gorsich, Steven W. .
BIOTECHNOLOGY FOR BIOFUELS, 2010, 3
[6]   Evolutionary Engineering of Saccharomyces cerevisiae for Enhanced Tolerance to Hydrolysates of Lignocellulosic Biomass [J].
Almario, Maria P. ;
Reyes, Luis H. ;
Kao, Katy C. .
BIOTECHNOLOGY AND BIOENGINEERING, 2013, 110 (10) :2616-2623
[7]   The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae [J].
Ask, Magnus ;
Bettiga, Maurizio ;
Mapelli, Valeria ;
Olsson, Lisbeth .
BIOTECHNOLOGY FOR BIOFUELS, 2013, 6
[8]   Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae [J].
Ayer, Anita ;
Gourlay, Campbell W. ;
Dawes, Ian W. .
FEMS YEAST RESEARCH, 2014, 14 (01) :60-72
[9]  
Beer LA, 2017, METHODS MOL BIOL, V1619, P339, DOI 10.1007/978-1-4939-7057-5_23
[10]   Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of Saccharomyces cerevisiae [J].
Borneman, Anthony R. ;
Forgan, Angus H. ;
Kolouchova, Radka ;
Fraser, James A. ;
Schmidt, Simon A. .
G3-GENES GENOMES GENETICS, 2016, 6 (04) :957-971