Linear preservers of tensor product of unitary orbits, and product numerical range

被引:13
作者
Li, Chi-Kwong [1 ]
Poon, Yiu-Tung [2 ]
Sze, Nung-Sing [3 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[3] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Unitary orbits; Automorphism; Quantum states; Density matrices; Partial transpose; Product numerical range;
D O I
10.1016/j.laa.2011.07.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the linear group of automorphism of Hermitian matrices which preserves the tensor product of unitary orbits is generated by natural automorphisms: change of an orthonormal basis in each tensor factor, partial transpose in each tensor factor, and interchanging two tensor factors of the same dimension. The result is then applied to show that automorphisms of the product numerical ranges have the same structure. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3797 / 3803
页数:7
相关论文
共 7 条
[1]   The automorphism group of separable states in quantum information theory [J].
Friedland, Shmuel ;
Li, Chi-Kwong ;
Poon, Yiu-Tung ;
Sze, Nung-Sing .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
[2]  
Halmos P. R., 1982, GRAD TEXTS MATH, V19
[3]   Separability of mixed states: Necessary and sufficient conditions [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICS LETTERS A, 1996, 223 (1-2) :1-8
[4]  
LI CK, 1995, LINEAR ALGEBRA APPL, V224, P463
[5]  
LI CK, 1988, LINEAR MULTILINEAR A, V23, P353
[6]   Product numerical range in a space with tensor product structure [J].
Puchala, Zbigniew ;
Gawron, Piotr ;
Miszczak, Jaroslaw Adam ;
Skowronek, Lukasz ;
Choi, Man-Duen ;
Zyczkowski, Karol .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (01) :327-342
[7]  
Zyczkowski K. ., 2006, Geometry of Quantum States