On Fourier Transforms of Radial Functions and Distributions

被引:41
作者
Grafakos, Loukas [1 ]
Teschl, Gerald [2 ,3 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[3] Int Erwin Schrodinger Inst Math Phys, A-1090 Vienna, Austria
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
Radial Fourier transform; Hankel transform;
D O I
10.1007/s00041-012-9242-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find a formula that relates the Fourier transform of a radial function on R (n) with the Fourier transform of the same function defined on R (n+2). This formula enables one to explicitly calculate the Fourier transform of any radial function f(r) in any dimension, provided one knows the Fourier transform of the one-dimensional function t bar right arrow f(|t|) and the two-dimensional function (x (1),x (2)) bar right arrow f(|(x (1),x (2))|). We prove analogous results for radial tempered distributions.
引用
收藏
页码:167 / 179
页数:13
相关论文
共 16 条
  • [1] [Anonymous], PRINCETON MATH SERIE
  • [2] Evans L.C., 2010, Grad. Stud. Math., V19, DOI DOI 10.1090/GSM/019
  • [3] Grafakos L., 2008, GRADUATE TEXTS MATH, V249
  • [4] Weyl-Titchmarsh Theory for Schrodinger Operators with Strongly Singular Potentials
    Kostenko, Aleksey
    Sakhnovich, Alexander
    Teschl, Gerald
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (08) : 1699 - 1747
  • [5] Liflyand E, 1998, Z ANAL ANWEND, V17, P103
  • [6] Reed M., 1972, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness
  • [7] Samko S. G., 1993, Fractional Integrals and Derivatives, DOI DOI 10.1007/S10957-022-02125-9
  • [8] Operators on radial functions
    Schaback, R
    Wu, Z
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 73 (1-2) : 257 - 270
  • [9] THE FOURIER-BESSEL SERIES REPRESENTATION OF THE PSEUDODIFFERENTIAL OPERATOR (-X-1D)(NU)
    SINGH, OP
    PANDEY, JN
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (04) : 969 - 976
  • [10] Szmydt Z., 1979, ANN POL MATH, V36, P249