Wide-bandwidth, meandering vibration energy harvester with distributed circuit board inertial mass

被引:35
作者
Berdy, D. F. [1 ,3 ]
Jung, B. [1 ]
Rhoads, J. F. [2 ,3 ]
Peroulis, D. [1 ,2 ,3 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
关键词
Piezoelectric; Vibration; Energy harvesting; Wide bandwidth; Increased bandwidth; Sensor node; MICRO POWER GENERATOR; FABRICATION; TRANSDUCER; MANAGEMENT; DESIGN; OUTPUT;
D O I
10.1016/j.sna.2012.01.043
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A wide-bandwidth, meandering piezoelectric vibration energy harvester is presented for the first time utilizing the sensor node electronics as a distributed inertial mass. The energy harvester achieves an experimental maximum power output of 198 mu W when excited with a peak acceleration of 0.2 g (where 1 g is 9.8 m/s(2)) at 35 Hz. The output power remains higher than half of the maximum power (99 mu W) for the frequency band from 34.4 to 42 Hz, achieving a half-power fractional bandwidth of 19.9%, an increase of 4x compared to typical single-mode energy harvesters. The output power remains above 20 mu W from 29.5 to 48 Hz, achieving a 20-mu W fractional bandwidth of 48%. This is the highest reported fractional bandwidth for this low 0.2 g acceleration level. The distributed inertial mass in combination with the meandering harvester's close natural frequency spacing is what enables the wide bandwidth. The energy harvester is demonstrated to autonomously operate a sensor node to sense and transmit temperature through a 434 MHz on-off-keying wireless transmitter while the electronics are used as the inertial distributed mass. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 157
页数:10
相关论文
共 64 条
[1]  
Adachi K, 2009, SMASIS2009, VOL 2, P281, DOI 10.1115/SMASIS2009-1343
[2]  
Aktakka E. E., 2011, TRANSDUCERS 2011 - 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, P1649, DOI 10.1109/TRANSDUCERS.2011.5969857
[3]  
[Anonymous], 1988, IEEE STAND PIEZ
[4]  
[Anonymous], 2010, PMG17 DAT SHEET
[5]  
ANSYS Inc, 2010, ANSYS REL 13 0 REL N
[6]   Power management for energy harvesting wireless sensors [J].
Arms, SW ;
Townsend, CP ;
Churchill, DL ;
Galbreath, JH ;
Mundell, SW .
SMART STRUCTURES AND MATERIALS 2005: SMART ELECTRONICS, MEMS, BIOMEMS, AND NANOTECHNOLOGY, 2005, 5763 :267-275
[7]  
Ayala I., 2009, P POWERMEMS WASH DC, P3
[8]   Design and Fabrication of Bimorph Transducer for Optimal Vibration Energy Harvesting [J].
Bedekar, Vishwas ;
Oliver, Josiah ;
Priya, Shashank .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2010, 57 (07) :1513-1523
[9]   A micro electromagnetic generator for vibration energy harvesting [J].
Beeby, S. P. ;
Torah, R. N. ;
Tudor, M. J. ;
Glynne-Jones, P. ;
O'Donnell, T. ;
Saha, C. R. ;
Roy, S. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (07) :1257-1265
[10]  
Beeby S. P., 2006, P DTIP C STRES IT, P26