Self-activation of cellulose: A new preparation methodology for activated carbon electrodes in electrochemical capacitors

被引:104
作者
Bommier, Clement [1 ]
Xu, Rui [2 ]
Wang, Wei [1 ]
Wang, Xingfeng [1 ]
Wen, David [1 ]
Lu, Jun [2 ]
Ji, Xiulei [1 ]
机构
[1] Oregon State Univ, Dept Chem, Corvallis, OR 97331 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
Pyrolysis; Cellulose; Flow rate; Self-activation; Electrochemical capacitor; X-RAY-DIFFRACTION; PYROLYSIS CONDITIONS; PHYSICAL ACTIVATION; LITHIUM INSERTION; PHOSPHORIC-ACID; KOH ACTIVATION; BIOMASS; CO2; MECHANISM; STEAM;
D O I
10.1016/j.nanoen.2015.03.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Current synthetic methods of biomass-derived activated carbon call for a costly chemical or physical activation process. Herein, we report a simple one-step annealing synthesis yielding a high surface area cellulose-derived activated carbon. We discover that simply varying the flow rate of Argon during pyrolysis enables 'self-activation' reactions that can tune the specific surface areas of the resulting carbon, ranging from 98 m(2)/g to values as high as 2600 m2/g. Furthermore, we, for the first time, observe a direct evolution of H-2 from the pyrolysis, which gives strong evidence towards an in situ self-activation mechanism. Surprisingly, the obtained activated carbon is a crumbled graphene nanostructure composed of interconnected sheets, making it ideal for use in an electrochemical capacitor. The cellulose-derived nanoporous carbon exhibits a capacitance of 132 F g(-1) at 1 A g(-1), a performance comparable to the state-of-the-art activated carbons. This work presents a fundamentally new angle to look at the synthesis of activated carbon, and highlights the importance of a controlled inert gas flow rate during synthesis in general, as its contributions can have a very large impact on the final material properties. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:709 / 717
页数:9
相关论文
共 62 条
[1]   The preparation of active carbons from coal by chemical and physical activation [J].
Ahmadpour, A ;
Do, DD .
CARBON, 1996, 34 (04) :471-479
[2]   The preparation of activated carbon from macadamia nutshell by chemical activation [J].
Ahmadpour, A ;
Do, DD .
CARBON, 1997, 35 (12) :1723-1732
[3]   Carbons as supports for industrial precious metal catalysts [J].
Auer, E ;
Freund, A ;
Pietsch, J ;
Tacke, T .
APPLIED CATALYSIS A-GENERAL, 1998, 173 (02) :259-271
[4]   Gas evolution and the mechanism of cellulose pyrolysis [J].
Banyasz, JL ;
Li, S ;
Lyons-Hart, J ;
Shafer, KH .
FUEL, 2001, 80 (12) :1757-1763
[5]   Model of micropore closure in hard carbon prepared from sucrose [J].
Buiel, ER ;
George, AE ;
Dahn, JR .
CARBON, 1999, 37 (09) :1399-1407
[6]   Nanostructured carbon for energy storage and conversion [J].
Candelaria, Stephanie L. ;
Shao, Yuyan ;
Zhou, Wei ;
Li, Xiaolin ;
Xiao, Jie ;
Zhang, Ji-Guang ;
Wang, Yong ;
Liu, Jun ;
Li, Jinghong ;
Cao, Guozhong .
NANO ENERGY, 2012, 1 (02) :195-220
[7]   Thermal decomposition of bio-oil: Focus on the products yields under different pyrolysis conditions [J].
Chhiti, Younes ;
Salvador, Sylvain ;
Commandre, Jean-Michel ;
Broust, Francois .
FUEL, 2012, 102 :274-281
[8]   A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin [J].
Collard, Francois-Xavier ;
Blin, Joel .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 38 :594-608
[9]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[10]   The ''falling cards model'' for the structure of microporous carbons [J].
Dahn, JR ;
Xing, W ;
Gao, Y .
CARBON, 1997, 35 (06) :825-830