Surfactant free synthesis of Au@Ni core-shell nanochains in aqueous medium as efficient transfer hydrogenation catalyst

被引:14
作者
Vysakh, A. B. [1 ,2 ]
Shebin, K. J. [1 ]
Jain, Ruchi [1 ,2 ]
Sumanta, P. [1 ,2 ]
Gopinath, Chinnakonda S. [1 ,2 ,3 ]
Vinod, C. P. [1 ,2 ,3 ]
机构
[1] CSIR, Natl Chem Lab, Catalysis Div, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
[2] CSIR, Natl Chem Lab, Acad Sci & Innovat Res AcSIR, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
[3] CSIR, Natl Chem Lab, Ctr Excellence Surface Sci, Dr Homi Bhabha Rd, Pune 411008, Maharashtra, India
关键词
Au@Ni nanochains; Surfactant free; Core-shell; NAPXPS; Transfer hydrogenation; Synergistic effects; SHAPE-CONTROLLED SYNTHESIS; NICKEL NANOPARTICLES; GOLD NANOPARTICLES; SYNERGISTIC CATALYSIS; FACILE REMOVAL; OXIDATION; METAL; REACTIVITY; SIZE; AG;
D O I
10.1016/j.apcata.2019.01.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A surfactant free aqueous phase synthesis method is reported for the generation of highly lattice mismatched Au@Ni core-shell nanochains without using any expensive and hazardous organic ligands. As synthesised Au@Ni nanochain structures showed high thermal stability and bulk oxidation resistance up to 300 degrees C. In situ near ambient pressure XPS (NAPXPS) analysis has been done for the bare Au@Ni nanochain surfaces under oxygen atmosphere and at different temperatures which showed evidence for the surface oxidation resistance of naked Au@Ni nanochains up to 200 degrees C. Ligand or capping agent free Au@Ni nanochain surfaces are found to be highly active for transfer hydrogenation of acetophenone to 1-phenyl ethanol an important commodity in perfumery industry.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 64 条
[1]   Structural and Architectural Evaluation of Bimetallic Nanoparticles: A Case Study of Pt-Ru Core-Shell and Alloy Nanoparticles [J].
Alayoglu, Selim ;
Zavalij, Peter ;
Eichhorn, Bryan ;
Wang, Qi ;
Frenkel, Anatoly I. ;
Chupas, Peter .
ACS NANO, 2009, 3 (10) :3127-3137
[2]   Nickel nanoparticles in hydrogen-transfer reductions: Characterisation and nature of the catalyst [J].
Alonso, Francisco ;
Riente, Paola ;
Alberto Sirvent, Juan ;
Yus, Miguel .
APPLIED CATALYSIS A-GENERAL, 2010, 378 (01) :42-51
[3]   Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles [J].
Aslam, M ;
Fu, L ;
Su, M ;
Vijayamohanan, K ;
Dravid, VP .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (12) :1795-1797
[4]   Diverse reactivity trends of Ni surfaces in Au@Ni core-shell nanoparticles probed by near ambient pressure (NAP) XPS [J].
Bharathan, Vysakh A. ;
Jain, Ruchi ;
Gopinath, Chinnakonda S. ;
Vinod, C. P. .
CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (19) :4489-4498
[5]   Highly Active and Selective Catalysis of Bimetallic Rh3Ni1 Nanoparticles in the Hydrogenation of Nitroarenes [J].
Cai, Shuangfei ;
Duan, Haohong ;
Rong, Hongpan ;
Wang, Dingsheng ;
Li, Linsen ;
He, Wei ;
Li, Yadong .
ACS CATALYSIS, 2013, 3 (04) :608-612
[6]   Stabilizing metal nanoparticles for heterogeneous catalysis [J].
Cao, Anmin ;
Lu, Rongwen ;
Veser, Goetz .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (41) :13499-13510
[7]   Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates [J].
Chen, Tianyou ;
Rodionov, Valentin O. .
ACS CATALYSIS, 2016, 6 (06) :4025-4033
[8]   Preparation and magnetic properties of nickel nanoparticles via the thermal decomposition of nickel organometallic precursor in alkylamines [J].
Chen, Yuanzhi ;
Peng, Dong-Liang ;
Lin, Donping ;
Luo, Xiaohua .
NANOTECHNOLOGY, 2007, 18 (50)
[9]   Chemoselective hydrogenation of nitro compounds with supported gold catalysts [J].
Corma, Avelino ;
Serna, Pedro .
SCIENCE, 2006, 313 (5785) :332-334
[10]   Green chemistry for nanoparticle synthesis [J].
Duan, Haohong ;
Wang, Dingsheng ;
Li, Yadong .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (16) :5778-5792