Validation of a Turbulent Kelvin-Helmholtz Shear Layer Model Using a High-Energy-Density OMEGA Laser Experiment

被引:42
作者
Hurricane, O. A. [1 ]
Smalyuk, V. A. [1 ]
Raman, K. [1 ]
Schilling, O. [1 ]
Hansen, J. F. [1 ]
Langstaff, G. [1 ]
Martinez, D. [1 ]
Park, H-S. [1 ]
Remington, B. A. [1 ]
Robey, H. F. [1 ]
Greenough, J. A. [1 ]
Wallace, R. [1 ]
Di Stefano, C. A. [2 ]
Drake, R. P. [2 ]
Marion, D. [2 ]
Krauland, C. M. [2 ]
Kuranz, C. C. [2 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[2] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA
关键词
MIXING LAYERS; FLOWS; VISCOSITY;
D O I
10.1103/PhysRevLett.109.155004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Following the successful demonstration of an OMEGA laser-driven platform for generating and studying nearly two-dimensional unstable plasma shear layers [Hurricane et al., Phys. Plasmas 16, 056305 (2009); Harding et al., Phys. Rev. Lett. 103, 045005 (2009)], this Letter reports on the first quantitative measurement of turbulent mixing in a high-energy-density plasma. As a blast wave moves parallel to an unperturbed interface between a low-density foam and a high-density plastic, baroclinic vorticity is deposited at the interface and a Kelvin-Helmholtz instability-driven turbulent mixing layer is created in the postshock flow due to surface roughness. The spatial scale and density profile of the turbulent layer are diagnosed using x-ray radiography with sufficiently small uncertainty so that the data can be used to constrain turbulent mixing models. The estimated Reynolds number (similar to 10(6)), Liepmann-Taylor scale (similar to 0.5 mu m), and inner viscous scale (similar to 0.17 mu m) in the postshock plasma flow are consistent with an "inertial subrange," within which a Kolmogorov turbulent energy cascade can be active. An illustration of comparing the data set with the predictions of a two-equation turbulence model in the ARES radiation hydrodynamics code is also presented.
引用
收藏
页数:4
相关论文
共 19 条
[1]  
Bazan G., 1998, P 2 INT WORKSH LAB A, P42
[2]   STREAMWISE VORTEX STRUCTURE IN PLANE MIXING LAYERS [J].
BERNAL, LP ;
ROSHKO, A .
JOURNAL OF FLUID MECHANICS, 1986, 170 :499-525
[3]   Waves on the surface of the Orion molecular cloud [J].
Berne, Olivier ;
Marcelino, Nuria ;
Cernicharo, Jose .
NATURE, 2010, 466 (7309) :947-949
[4]   Initial performance results of the OMEGA laser system [J].
Boehly, TR ;
Brown, DL ;
Craxton, RS ;
Keck, RL ;
Knauer, JP ;
Kelly, JH ;
Kessler, TJ ;
Kumpan, SA ;
Loucks, SJ ;
Letzring, SA ;
Marshall, FJ ;
McCrory, RL ;
Morse, SFB ;
Seka, W ;
Soures, JM ;
Verdon, CP .
OPTICS COMMUNICATIONS, 1997, 133 (1-6) :495-506
[5]   DENSITY EFFECTS AND LARGE STRUCTURE IN TURBULENT MIXING LAYERS [J].
BROWN, GL ;
ROSHKO, A .
JOURNAL OF FLUID MECHANICS, 1974, 64 (JUL24) :775-&
[6]   The viscosity of dense plasmas mixtures [J].
Clerouin, JG ;
Cherfi, MH ;
Zerah, G .
EUROPHYSICS LETTERS, 1998, 42 (01) :37-42
[7]   A study of ALE simulations of Rayleigh-Taylor instability [J].
Darlington, RM ;
McAbee, TL ;
Rodrigue, G .
COMPUTER PHYSICS COMMUNICATIONS, 2001, 135 (01) :58-73
[8]   K-L turbulence model for the self-similar growth of the Rayleigh-Taylor and Richtmyer-Meshkov instabilities [J].
Dimonte, Guy ;
Tipton, Robert .
PHYSICS OF FLUIDS, 2006, 18 (08)
[9]   The mixing transition in turbulent flows [J].
Dimotakis, PE .
JOURNAL OF FLUID MECHANICS, 2000, 409 :69-98
[10]   Observation of a Kelvin-Helmholtz Instability in a High-Energy-Density Plasma on the Omega Laser [J].
Harding, E. C. ;
Hansen, J. F. ;
Hurricane, O. A. ;
Drake, R. P. ;
Robey, H. F. ;
Kuranz, C. C. ;
Remington, B. A. ;
Bono, M. J. ;
Grosskopf, M. J. ;
Gillespie, R. S. .
PHYSICAL REVIEW LETTERS, 2009, 103 (04)