Thermodynamic analysis of glycerol-steam reforming in the presence of CO2 or H2 as carbon gasifying agent

被引:23
作者
Cheng, Chin Kui [1 ]
Foo, Say Yei [1 ]
Adesina, Adesoji A. [1 ]
机构
[1] Univ New S Wales, Sch Chem Engn, Reactor Engn & Technol Grp, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Carbon deposition; Glycerol; Steam reforming; Thermodynamic; BIOMASS-DERIVED HYDROCARBONS; HYDROGEN-PRODUCTION; BIMETALLIC CO-NI/AL2O3; NICKEL-CATALYSTS; SYNTHESIS GAS; ADSORPTION; CONVERSION;
D O I
10.1016/j.ijhydene.2012.04.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper deals with the thermodynamic analysis of glycerol-steam reforming with H-2 or CO2 co-fed as carbon gasifying agents in order to mitigate carbon deposition. Thermodynamic calculations were carried out at temperatures from 500 to 800 K and steam-to-glycerol ratios of 0:1-20:1 at atmospheric pressure. Carbon deposition was significant (1.0-1.7 mol C/mol C3H8O3) at low steam-to-glycerol ratio (<4.0) within the reaction temperature range (500-800 K). Carbon-free regime can only be achieved at temperatures above 700 K at steam-to-glycerol ratio of 3:1. Beyond the steam-to-glycerol ratio of 4:1, carbon deposition is essentially zero. The addition of H2 (as co-reactant) reduced the carbon deposition (down to 0.58 mol C/mol C3H8O3 from 1.70 mol C/mol C3H8O3) even at steam-to-glycerol ratio of 0:1 and reaction temperature of 500 K. Above 5 mol H-2/mol C3H8O3, thermodynamic analysis showed undetectable carbon deposition. Significantly, this could be attributed to the H-2-gasification of carbon species to produce CH4 and hence, the concomitant increase in the latter. The introduction of CO2 into the glycerol-steam system, however, led to increased carbon deposition at all temperatures considered in this study due to the reaction between CO2 and CH4 in forming carbon deposits. Nevertheless, the carbon yield can be reduced through reforming at higher temperatures. It was further concluded from the current work that H-2 co-feeding linearly increased the exothermicity of reforming system. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:10101 / 10110
页数:10
相关论文
共 19 条
[1]   Conversion of glycerol to hydrogen via a steam reforming process over nickel catalysts [J].
Adhikari, Sushil ;
Fernando, Sandun D. ;
To, S. D. Filip ;
Bricka, R. Mark ;
Steele, Philip H. ;
Haryanto, Agus .
ENERGY & FUELS, 2008, 22 (02) :1220-1226
[2]   Hydrogen production from glycerin by steam reforming over nickel catalysts [J].
Adhikari, Sushil ;
Fernando, Sandun D. ;
Haryanto, Agus .
RENEWABLE ENERGY, 2008, 33 (05) :1097-1100
[3]   A thermodynamic analysis of hydrogen production by steam reforming of glycerol [J].
Adhikari, Sushil ;
Fernando, Sandun ;
Gwaltney, Steven R. ;
To, S. D. Filip ;
Bricka, R. Mark ;
Steele, Philip H. ;
Haryanto, Agus .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (14) :2875-2880
[4]  
[Anonymous], 2004, PROPERTIES GASES LIQ
[5]   Thermodynamic analyses of adsorption-enhanced steam reforming of glycerol for hydrogen production [J].
Chen, Haisheng ;
Zhang, Tianfu ;
Dou, Bilin ;
Dupont, Valerie ;
Williams, Paul ;
Ghadiri, Mojtaba ;
Ding, Yulong .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (17) :7208-7222
[6]   Carbon deposition on bimetallic Co-Ni/Al2O3 catalyst during steam reforming of glycerol [J].
Cheng, Chin Kui ;
Foo, Say Yei ;
Adesina, Adesoji A. .
CATALYSIS TODAY, 2011, 164 (01) :268-274
[7]   Glycerol Steam Reforming over Bimetallic Co-Ni/Al2O3 [J].
Cheng, Chin Kui ;
Foo, Say Yei ;
Adesina, Adesoji A. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (21) :10804-10817
[8]   Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water [J].
Cortright, RD ;
Davda, RR ;
Dumesic, JA .
NATURE, 2002, 418 (6901) :964-967
[9]   Thermodynamic Analysis of Glycerol Steam Reforming [J].
Dieuzeide, Maria L. ;
Amadeo, Norma .
CHEMICAL ENGINEERING & TECHNOLOGY, 2010, 33 (01) :89-96
[10]  
Hardiman K. M., 2007, THESIS U NEW S WALES