Coronal energy input and dissipation in a solar active region 3D MHD model

被引:15
作者
Bourdin, Ph. -A. [1 ,2 ]
Bingert, S. [3 ]
Peter, H. [2 ]
机构
[1] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
[2] Max Planck Inst Sonnensyst Forsch, D-37077 Gottingen, Germany
[3] Gesell Wissensch Datenverarbeitung, D-37077 Gottingen, Germany
基金
美国国家科学基金会;
关键词
Sun: corona; magnetohydrodynamics (MHD); methods: numerical; Sun: UV radiation; AB-INITIO APPROACH; TRANSITION-REGION; EMISSION-LINES; ATOMIC DATABASE; HEATING PROBLEM; HINODE; MISSION; CHIANTI; LOOPS; SUN;
D O I
10.1051/0004-6361/201525839
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. We have conducted a 3D MHD simulation of the solar corona above an active region (AR) in full scale and high resolution, which shows coronal loops, and plasma flows within them, similar to observations. Aims. We want to find the connection between the photospheric energy input by field-line braiding with the coronal energy conversion by Ohmic dissipation of induced currents. Methods. To this end we compare the coronal energy input and dissipation within our simulation domain above different fields of view, e.g. for a small loops system in the AR core. We also choose an ensemble of field lines to compare, e.g., the magnetic energy input to the heating per particle along these field lines. Results. We find an enhanced Ohmic dissipation of currents in the corona above areas that also have enhanced upwards-directed Poynting flux. These regions coincide with the regions where hot coronal loops within the AR core are observed. The coronal density plays a role in estimating the coronal temperature due to the generated heat input. A minimum flux density of about 200 Gauss is needed in the photosphere to heat a field line to coronal temperatures of about 1 MK. Conclusions. This suggests that the field-line braiding mechanism provides the coronal energy input and that the Ohmic dissipation of induced currents dominates the coronal heating mechanism.
引用
收藏
页数:8
相关论文
共 26 条
[1]   Observationally driven 3D magnetohydrodynamics model of the solar corona above an active region [J].
Bourdin, Ph. -A. ;
Bingert, S. ;
Peter, H. .
ASTRONOMY & ASTROPHYSICS, 2013, 555
[2]   EFFECT OF CORONAL ELEMENTAL ABUNDANCES ON THE RADIATIVE LOSS FUNCTION [J].
COOK, JW ;
CHENG, CC ;
JACOBS, VL ;
ANTIOCHOS, SK .
ASTROPHYSICAL JOURNAL, 1989, 338 (02) :1176-1183
[3]   The EUV imaging spectrometer for Hinode [J].
Culhane, J. L. ;
Harra, L. K. ;
James, A. M. ;
Al-Janabi, K. ;
Bradley, L. J. ;
Chaudry, R. A. ;
Rees, K. ;
Tandy, J. A. ;
Thomas, P. ;
Whillock, M. C. R. ;
Winter, B. ;
Doschek, G. A. ;
Korendyke, C. M. ;
Brown, C. M. ;
Myers, S. ;
Mariska, J. ;
Seely, J. ;
Lang, J. ;
Kent, B. J. ;
Shaughnessy, B. M. ;
Young, P. R. ;
Simnett, G. M. ;
Castelli, C. M. ;
Mahmoud, S. ;
Mapson-Menard, H. ;
Probyn, B. J. ;
Thomas, R. J. ;
Davila, J. ;
Dere, K. ;
Windt, D. ;
Shea, J. ;
Hagood, R. ;
Moye, R. ;
Hara, H. ;
Watanabe, T. ;
Matsuzaki, K. ;
Kosugi, T. ;
Hansteen, V. ;
Wikstol, O. .
SOLAR PHYSICS, 2007, 243 (01) :19-61
[4]   CHIANTI - an atomic database for emission lines .1. Wavelengths greater than 50 angstrom [J].
Dere, KP ;
Landi, E ;
Mason, HE ;
Fossi, BCM ;
Young, PR .
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1997, 125 (01) :149-173
[5]   ENERGY-BALANCE IN THE SOLAR TRANSITION REGION .3. HELIUM EMISSION IN HYDROSTATIC, CONSTANT-ABUNDANCE MODELS WITH DIFFUSION [J].
FONTENLA, JM ;
AVRETT, EH ;
LOESER, R .
ASTROPHYSICAL JOURNAL, 1993, 406 (01) :319-345
[6]   Bulk heating and slender magnetic loops in the solar corona [J].
Gudiksen, BV ;
Nordlund, Å .
ASTROPHYSICAL JOURNAL, 2002, 572 (01) :L113-L116
[7]   An ab initio approach to solar coronal loops [J].
Gudiksen, BV ;
Nordlund, Å .
ASTROPHYSICAL JOURNAL, 2005, 618 (02) :1031-1038
[8]   An ab initio approach to the solar coronal heating problem [J].
Gudiksen, BV ;
Nordlund, Å .
ASTROPHYSICAL JOURNAL, 2005, 618 (02) :1020-1030
[9]   ON REDSHIFTS AND BLUESHIFTS IN THE TRANSITION REGION AND CORONA [J].
Hansteen, V. H. ;
Hara, H. ;
De Pontieu, B. ;
Carlsson, M. .
ASTROPHYSICAL JOURNAL, 2010, 718 (02) :1070-1078
[10]   On solving the coronal heating problem [J].
Klimchuk, JA .
SOLAR PHYSICS, 2006, 234 (01) :41-77