A Posteriori Error Bounds for Discontinuous Galerkin Methods for Quasilinear Parabolic Problems

被引:3
作者
Georgoulis, Emmanuil H. [1 ]
Lakkis, Omar [2 ]
机构
[1] Univ Leicester, Dept Math, Univ Rd, Leicester LE1 7RH, Leics, England
[2] Univ Sussex, Dept Math, Falmer BN1 9RF, E Sussex, England
来源
NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009 | 2010年
关键词
2ND-ORDER ELLIPTIC PROBLEMS; FINITE-ELEMENT METHODS; DIFFUSION EQUATIONS; APPROXIMATIONS; RECONSTRUCTION;
D O I
10.1007/978-3-642-11795-4_37
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a posteriori error bounds for a quasilinear parabolic problem, which is approximated by the hp-version interior penalty discontinuous Galerkin method (IPDG). The error is measured in the energy norm. The theory is developed for the semidiscrete case for simplicity, allowing to focus on the challenges of a posteriori error control of IPDG space-discretizations of strictly monotone quasilinear parabolic problems. The a posteriori bounds are derived using the elliptic reconstruction framework, utilizing available a posteriori error bounds for the corresponding steady-state elliptic problem.
引用
收藏
页码:351 / 358
页数:8
相关论文
共 18 条
[1]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[2]  
BAKER GA, 1977, MATH COMPUT, V31, P45, DOI 10.1090/S0025-5718-1977-0431742-5
[3]   Energy norm a posteriori error estimation for discontinuous Galerkin methods [J].
Becker, R ;
Hansbo, P ;
Larson, MG .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (5-6) :723-733
[4]   Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations [J].
Burman, Erik ;
Ern, Alexandre .
MATHEMATICS OF COMPUTATION, 2007, 76 (259) :1119-1140
[5]   A posteriori error estimation for a fully discrete discontinuous Galerkin approximation to a kind of singularly perturbed problems [J].
Chen, Yanping ;
Yang, Jiming .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2007, 43 (10) :757-770
[6]   A posteriori discontinuous Galerkin error estimates for transient convection-diffusion equations [J].
Ern, A ;
Proft, J .
APPLIED MATHEMATICS LETTERS, 2005, 18 (07) :833-841
[7]  
Ern A., POSTERIORI ERR UNPUB
[8]  
Georgoulis E. H., POSTERIORI ERR UNPUB
[9]   Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems I:: the scalar case [J].
Houston, P ;
Robson, J ;
Süli, E .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (04) :726-749
[10]  
Houston P., IMA J NUMER IN PRESS