Novel Comprehensive Control Framework for Incorporating VSCs to Smart Power Grids Using Bidirectional Synchronous-VSC

被引:120
作者
Ashabani, Mahdi [1 ]
Mohamed, Yasser Abdel-Rady I. [1 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
关键词
Control topology; dc-link voltage regulation; power control; voltage-source converters (VSCs); CONTROL STRATEGY; SYNCHRONIZATION; MANAGEMENT; CONVERTER;
D O I
10.1109/TPWRS.2013.2287291
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new control strategy for voltage-source converters (VSCs) in the frequency-angle domain which enables dc-link voltage regulation via frequency and load angle adjustment. A major advantage of the proposed controller is emulating the behavior of synchronous machines (SMs) with proper regulation of dc-link voltage which eases integration of VSCs interfacing distributed and renewable generation units into ac systems in the presence of conventional SMs. A cascaded frequency, angle and virtual torque control topology is developed to emulate the mechanical behavior of an SM which offers synchronization power to eliminate the need for a phase-locked-loop after initial converter synchronization, and damping power dynamics to damp power oscillations; and presents frequency dynamics similar to SMs, thus it introduces some inertia to the grid. The controller presents high stability margin and fast dc-link voltage regulation, whereas it can provide frequency support in the ac-side during contingencies. Frequency and voltage amplitude are adjusted by two separate loops. Two different variants are proposed for dc-link voltage control; namely direct dc-link voltage control and indirect dc-link voltage control via a dc-link voltage controller. Small-signal dynamics, analysis, and design process are presented. Both simulation and experimental results are provided to validate the controller effectiveness.
引用
收藏
页码:943 / 957
页数:15
相关论文
共 24 条
[1]  
[Anonymous], 2008, IEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES
[2]   Implementing Virtual Inertia in DFIG-Based Wind Power Generation [J].
Arani, Mohammadreza Fakhari Moghaddam ;
El-Saadany, Ehab F. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (02) :1373-1384
[3]  
Ashabani M., 2013, IEEE POWER SYST
[4]   General Interface for Power Management of Micro-Grids Using Nonlinear Cooperative Droop Control [J].
Ashabani, Seyed Mahdi ;
Mohamed, Yasser Abdel-Rady I. .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (03) :2929-2941
[5]   A Flexible Control Strategy for Grid-Connected and Islanded Microgrids With Enhanced Stability Using Nonlinear Microgrid Stabilizer [J].
Ashabani, Seyed Mahdi ;
Mohamed, Yasser Abdel-Rady I. .
IEEE TRANSACTIONS ON SMART GRID, 2012, 3 (03) :1291-1301
[6]   The Load as an Energy Asset in a Distributed DC SmartGrid Architecture [J].
Balog, Robert S. ;
Weaver, Wayne W. ;
Krein, Philip T. .
IEEE TRANSACTIONS ON SMART GRID, 2012, 3 (01) :253-260
[7]   Overview of control and grid synchronization for distributed power generation systems [J].
Blaabjerg, Frede ;
Teodorescu, Remus ;
Liserre, Marco ;
Timbus, Adrian V. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2006, 53 (05) :1398-1409
[8]   Adaptive Droop Control for Effective Power Sharing in Multi-Terminal DC (MTDC) Grids [J].
Chaudhuri, Nilanjan Ray ;
Chaudhuri, Balarko .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (01) :21-29
[9]   System Frequency Support Through Multi-Terminal DC (MTDC) Grids [J].
Chaudhuri, Nilanjan Ray ;
Majumder, Rajat ;
Chaudhuri, Balarko .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (01) :347-356
[10]   Decentralized Cooperative Control Strategy of Microsources for Stabilizing Autonomous VSC-Based Microgrids [J].
Divshali, Poria Hasanpor ;
Alimardani, Arash ;
Hosseinian, Seyed Hossein ;
Abedi, Mehrdad .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (04) :1949-1959