Parameter identification of linear time-invariant systems using dynamic regressor extension and mixing

被引:30
作者
Aranovskiy, Stanislav [1 ,2 ]
Belov, Alexey [2 ,3 ]
Ortega, Romeo [4 ]
Barabanov, Nikita [2 ,5 ]
Bobtsov, Alexey [2 ]
机构
[1] Cent Supelec, IETR, Equipe Automat, Ave Boulaie, F-35576 Cesson Sevigne, France
[2] ITMO Univ, Fac Control Syst & Robot, St Petersburg 197101, Russia
[3] Russian Acad Sci, VA Trapeznikov Inst Control Sci, Lab Dynam Control Syst, Moscow, Russia
[4] Cent Supelec, CNRS, Lab Signaux & Syst, Gif Sur Yvette, France
[5] North Dakota State Univ, Dept Math, Fargo, ND USA
关键词
DREM; persistent excitation; system identification; transient performance; POSITION OBSERVER; ESTIMATORS; STABILITY;
D O I
10.1002/acs.3006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dynamic regressor extension and mixing (DREM) is a new technique for parameter estimation that has proven instrumental in the solution of several open problems in system identification and adaptive control. A key property of the estimator is that, by generation of scalar regression models, it guarantees monotonicity of each element of the parameter error vector that is a much stronger property than monotonicity of the vector norm, as ensured with classical gradient or least-squares estimators. On the other hand, the overall performance improvement of the estimator is strongly dependent on the suitable choice of certain operators that enter in the design. In this paper, we investigate the impact of these operators on the convergence properties of the estimator in the context of identification of linear single-input single-output time-invariant systems with periodic excitation. The most important contribution is that the DREM (almost surely) converges under the same persistence of excitation (PE) conditions as the gradient estimator while providing improved transient performance. In particular, we give some guidelines how to select the DREM operators to ensure convergence under the same PE conditions as standard identification schemes.
引用
收藏
页码:1016 / 1030
页数:15
相关论文
共 22 条
[1]   EXPONENTIAL STABILITY OF LINEAR EQUATIONS ARISING IN ADAPTIVE IDENTIFICATION [J].
ANDERSON, BDO .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (01) :83-88
[2]  
[Anonymous], 2013, Matrix Analysis
[3]   Performance Enhancement of Parameter Estimators via Dynamic Regressor Extension and Mixing [J].
Aranovskiy, Stanislav ;
Bobtsov, Alexey ;
Ortega, Romeo ;
Pyrkin, Anton .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (07) :3546-3550
[4]   Improved Transients in Multiple Frequencies Estimation via Dynamic Regressor Extension and Mixing [J].
Aranovskiy, Stanislav ;
Bobtsov, Alexey ;
Ortega, Romeo ;
Pyrkin, Anton .
IFAC PAPERSONLINE, 2016, 49 (13) :99-104
[5]   On global asymptotic stability of <(x) over dot> = -φ(t)φT(t)x with φ not persistently exciting [J].
Barabanov, Nikita ;
Ortega, Romeo .
SYSTEMS & CONTROL LETTERS, 2017, 109 :24-29
[6]  
Belov A, 2018, 2018 EUR CONTR C LIM
[7]  
Besicovitoh A S., 1932, Almost periodic functions
[8]   A robust nonlinear position observer for synchronous motors with relaxed excitation conditions [J].
Bobtsov, Alexey ;
Bazylev, Dmitry ;
Pyrkin, Anton ;
Aranovskiy, Stanislav ;
Ortega, Romeo .
INTERNATIONAL JOURNAL OF CONTROL, 2017, 90 (04) :813-824
[9]   A robust globally convergent position observer for the permanent magnet synchronous motor [J].
Bobtsov, Alexey A. ;
Pyrkin, Anton A. ;
Ortega, Romeo ;
Vukosavic, Slobodan N. ;
Stankovic, Aleksandar M. ;
Panteley, Elena V. .
AUTOMATICA, 2015, 61 :47-54
[10]   Robust Adaptive Sensorless Control for Permanent-Magnet Synchronous Motors [J].
Choi, Jongwon ;
Nam, Kwanghee ;
Bobtsov, Alexey A. ;
Pyrkin, Anton ;
Ortega, Romeo .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2017, 32 (05) :3989-3997