Dynamics of a ring of three fractional-order Duffing oscillators

被引:16
作者
Barba-Franco, J. J. [1 ]
Gallegos, A. [1 ]
Jaimes-Reategui, R. [1 ]
Pisarchik, A. N. [2 ,3 ]
机构
[1] Univ Guadalajara, Ctr Univ Lagos, Dept Ciencias Exactas & Tecnol, Enr Diaz de Leon 1144, Lagos De Moreno, Jalisco, Mexico
[2] Univ Politecn Madrid, Ctr Tecnol Biomed, Campus Montegancedo, Madrid 28223, Spain
[3] Innopolis Univ, Univ Skaya Str 1, Innopolis 420500, Republic Of Tat, Russia
关键词
Duffing oscillator; Unidirectional coupling; Fractional-order differential equations; Multistability; Grundwall-Letnikov derivative; ROTATING WAVES; SYNCHRONIZATION; RESONANCE; CHAOS; MODEL;
D O I
10.1016/j.chaos.2021.111747
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the dynamics of three ring-coupled double-well Duffing oscillators modelled by fractional-order differential equations. The analysis of time series, Fourier spectra, phase portraits, Poincare sec-tions, and Lyapunov exponents using the fractional order and the coupling strength as control parameters, shows that the dynamics of such system is much richer than that of the system with integer order. We demonstrate the appearance of multistability and a rotating wave when either the fractional derivative index or the coupling strength is increased, on the route from a stable steady-state regime to hyperchaos through a Hopf bifurcation and a cascade of torus bifurcations.(c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
[31]   Fractional-Order Tabu Learning Neuron Models and Their Dynamics [J].
Yu, Yajuan ;
Gu, Zhenhua ;
Shi, Min ;
Wang, Feng .
FRACTAL AND FRACTIONAL, 2024, 8 (07)
[32]   On the dynamics, control and synchronization of fractional-order Ikeda map [J].
Ouannas, Adel ;
Khennaoui, Amina-Aicha ;
Odibat, Zaid ;
Viet-Thanh Pham ;
Grassi, Giuseppe .
CHAOS SOLITONS & FRACTALS, 2019, 123 :108-115
[33]   Solution and dynamics analysis of a fractional-order hyperchaotic system [J].
He, Shaobo ;
Sun, Kehui ;
Wang, Huihai .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (11) :2965-2973
[34]   Dynamics of fractional-order neural networks [J].
Kaslik, Eva ;
Sivasundaram, Seenith .
2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, :611-618
[35]   Dynamical analysis of Duffing oscillator with fractional-order feedback with time delay [J].
Wen Shao-Fang ;
Shen Yong-Jun ;
Yang Shao-Pu .
ACTA PHYSICA SINICA, 2016, 65 (09)
[36]   Chaos detection of Duffing system with fractional-order derivative by Melnikov method [J].
Niu, Jiangchuan ;
Liu, Ruyu ;
Shen, Yongjun ;
Yang, Shaopu .
CHAOS, 2019, 29 (12)
[37]   Primary resonance of Duffing oscillator with two kinds of fractional-order derivatives [J].
Shen, Yongjun ;
Yang, Shaopu ;
Xing, Haijun ;
Ma, Huaixiang .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2012, 47 (09) :975-983
[38]   Chaos of a class of piecewise Duffing oscillator with fractional-order derivative term [J].
Wang J. ;
Shen Y. ;
Zhang J. ;
Wang X. .
Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (13) :8-16
[39]   NONLINEAR DYNAMICS OF DUFFING SYSTEM WITH FRACTIONAL ORDER DAMPING [J].
Cao, Junyi ;
Ma, Chengbin ;
Xie, Hang ;
Jiang, Zhuangde .
PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, :1003-1009
[40]   Dynamics, circuit implementation and synchronization of a new three-dimensional fractional-order chaotic system [J].
Zhang, Xu ;
Li, Zhijun ;
Chang, De .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2017, 82 :435-445