Dynamics of a ring of three fractional-order Duffing oscillators

被引:16
|
作者
Barba-Franco, J. J. [1 ]
Gallegos, A. [1 ]
Jaimes-Reategui, R. [1 ]
Pisarchik, A. N. [2 ,3 ]
机构
[1] Univ Guadalajara, Ctr Univ Lagos, Dept Ciencias Exactas & Tecnol, Enr Diaz de Leon 1144, Lagos De Moreno, Jalisco, Mexico
[2] Univ Politecn Madrid, Ctr Tecnol Biomed, Campus Montegancedo, Madrid 28223, Spain
[3] Innopolis Univ, Univ Skaya Str 1, Innopolis 420500, Republic Of Tat, Russia
关键词
Duffing oscillator; Unidirectional coupling; Fractional-order differential equations; Multistability; Grundwall-Letnikov derivative; ROTATING WAVES; SYNCHRONIZATION; RESONANCE; CHAOS; MODEL;
D O I
10.1016/j.chaos.2021.111747
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the dynamics of three ring-coupled double-well Duffing oscillators modelled by fractional-order differential equations. The analysis of time series, Fourier spectra, phase portraits, Poincare sec-tions, and Lyapunov exponents using the fractional order and the coupling strength as control parameters, shows that the dynamics of such system is much richer than that of the system with integer order. We demonstrate the appearance of multistability and a rotating wave when either the fractional derivative index or the coupling strength is increased, on the route from a stable steady-state regime to hyperchaos through a Hopf bifurcation and a cascade of torus bifurcations.(c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Primary and subharmonic simultaneous resonance of fractional-order Duffing oscillator
    Yongjun Shen
    Hang Li
    Shaopu Yang
    Mengfei Peng
    Yanjun Han
    Nonlinear Dynamics, 2020, 102 : 1485 - 1497
  • [22] Superharmonic Resonance of Fractional-Order Mathieu-Duffing Oscillator
    Niu, Jiangchuan
    Li, Xiaofeng
    Xing, Haijun
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (07):
  • [23] Primary resonance of a fractional-order Rayleigh-Duffing system
    Chen, Jufeng
    Wang, Yuanyuan
    Shen, Yongjun
    Li, Xianghong
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (16): : 111 - 117
  • [24] Resonance study of fractional-order strongly nonlinear duffing systems
    Liu, J.
    Zhang, P.
    Gui, H.
    Xing, T.
    Liu, H.
    Zhang, C.
    INDIAN JOURNAL OF PHYSICS, 2024, 98 (09) : 3317 - 3326
  • [25] Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection
    Lin Du
    Yunping Zhao
    Youming Lei
    Jian Hu
    Xiaole Yue
    Nonlinear Dynamics, 2018, 92 : 1921 - 1933
  • [26] Crises in a non-autonomous fractional-order Duffing system
    Liu Xiao-Jun
    Hong Ling
    Jiang Jun
    ACTA PHYSICA SINICA, 2016, 65 (18)
  • [27] Pitchfork bifurcation and vibrational resonance in a fractional-order Duffing oscillator
    J H YANG
    M A F SANJUÁN
    W XIANG
    H ZHU
    Pramana, 2013, 81 : 943 - 957
  • [28] Pitchfork bifurcation and vibrational resonance in a fractional-order Duffing oscillator
    Yang, J. H.
    Sanjuan, M. A. F.
    Xiang, W.
    Zhu, H.
    PRAMANA-JOURNAL OF PHYSICS, 2013, 81 (06): : 943 - 957
  • [29] Primary and subharmonic simultaneous resonance of fractional-order Duffing oscillator
    Shen, Yongjun
    Li, Hang
    Yang, Shaopu
    Peng, Mengfei
    Han, Yanjun
    NONLINEAR DYNAMICS, 2020, 102 (03) : 1485 - 1497
  • [30] Chimera states in fractional-order coupled Rayleigh oscillators
    Sun, Zhongkui
    Xue, Qifan
    Zhao, Nannan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 135