Dynamics of a ring of three fractional-order Duffing oscillators

被引:16
作者
Barba-Franco, J. J. [1 ]
Gallegos, A. [1 ]
Jaimes-Reategui, R. [1 ]
Pisarchik, A. N. [2 ,3 ]
机构
[1] Univ Guadalajara, Ctr Univ Lagos, Dept Ciencias Exactas & Tecnol, Enr Diaz de Leon 1144, Lagos De Moreno, Jalisco, Mexico
[2] Univ Politecn Madrid, Ctr Tecnol Biomed, Campus Montegancedo, Madrid 28223, Spain
[3] Innopolis Univ, Univ Skaya Str 1, Innopolis 420500, Republic Of Tat, Russia
关键词
Duffing oscillator; Unidirectional coupling; Fractional-order differential equations; Multistability; Grundwall-Letnikov derivative; ROTATING WAVES; SYNCHRONIZATION; RESONANCE; CHAOS; MODEL;
D O I
10.1016/j.chaos.2021.111747
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the dynamics of three ring-coupled double-well Duffing oscillators modelled by fractional-order differential equations. The analysis of time series, Fourier spectra, phase portraits, Poincare sec-tions, and Lyapunov exponents using the fractional order and the coupling strength as control parameters, shows that the dynamics of such system is much richer than that of the system with integer order. We demonstrate the appearance of multistability and a rotating wave when either the fractional derivative index or the coupling strength is increased, on the route from a stable steady-state regime to hyperchaos through a Hopf bifurcation and a cascade of torus bifurcations.(c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Global Dynamics of Fractional-Order Discrete Maps
    Liu, Xiaojun
    Hong, Ling
    Tang, Dafeng
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (09)
  • [22] Bifurcation and Chaotic Behavior of Duffing System with Fractional-Order Derivative and Time Delay
    Wang, Cuiyan
    Wang, Meiqi
    Xing, Wuce
    Shi, Shaoxuan
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [23] Fractional-order stability analysis of earthquake dynamics
    Pelap, F. B.
    Tanekou, G. B.
    Fogang, C. F.
    Kengne, R.
    [J]. JOURNAL OF GEOPHYSICS AND ENGINEERING, 2018, 15 (04) : 1673 - 1687
  • [24] Primary and subharmonic simultaneous resonance of fractional-order Duffing oscillator
    Yongjun Shen
    Hang Li
    Shaopu Yang
    Mengfei Peng
    Yanjun Han
    [J]. Nonlinear Dynamics, 2020, 102 : 1485 - 1497
  • [25] Superharmonic Resonance of Fractional-Order Mathieu-Duffing Oscillator
    Niu, Jiangchuan
    Li, Xiaofeng
    Xing, Haijun
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (07):
  • [26] Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection
    Lin Du
    Yunping Zhao
    Youming Lei
    Jian Hu
    Xiaole Yue
    [J]. Nonlinear Dynamics, 2018, 92 : 1921 - 1933
  • [27] Crises in a non-autonomous fractional-order Duffing system
    Liu Xiao-Jun
    Hong Ling
    Jiang Jun
    [J]. ACTA PHYSICA SINICA, 2016, 65 (18)
  • [28] FORECASTING MODELS FOR CHAOTIC FRACTIONAL-ORDER OSCILLATORS USING NEURAL NETWORKS
    Bingi, Kishore
    Prusty, B. Rajanarayan
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2021, 31 (03) : 387 - 398
  • [29] Chimera states in fractional-order coupled Rayleigh oscillators
    Sun, Zhongkui
    Xue, Qifan
    Zhao, Nannan
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 135
  • [30] Three-dimensional chaotic autonomous van der pol-duffing type oscillator and its fractional-order form
    Kuiate, Gaetan Fautso
    Kingni, Sifeu Takougang
    Tamba, Victor Kamdoum
    Talla, Pierre Kisito
    [J]. CHINESE JOURNAL OF PHYSICS, 2018, 56 (05) : 2560 - 2573