Dynamics of a ring of three fractional-order Duffing oscillators

被引:16
|
作者
Barba-Franco, J. J. [1 ]
Gallegos, A. [1 ]
Jaimes-Reategui, R. [1 ]
Pisarchik, A. N. [2 ,3 ]
机构
[1] Univ Guadalajara, Ctr Univ Lagos, Dept Ciencias Exactas & Tecnol, Enr Diaz de Leon 1144, Lagos De Moreno, Jalisco, Mexico
[2] Univ Politecn Madrid, Ctr Tecnol Biomed, Campus Montegancedo, Madrid 28223, Spain
[3] Innopolis Univ, Univ Skaya Str 1, Innopolis 420500, Republic Of Tat, Russia
关键词
Duffing oscillator; Unidirectional coupling; Fractional-order differential equations; Multistability; Grundwall-Letnikov derivative; ROTATING WAVES; SYNCHRONIZATION; RESONANCE; CHAOS; MODEL;
D O I
10.1016/j.chaos.2021.111747
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the dynamics of three ring-coupled double-well Duffing oscillators modelled by fractional-order differential equations. The analysis of time series, Fourier spectra, phase portraits, Poincare sec-tions, and Lyapunov exponents using the fractional order and the coupling strength as control parameters, shows that the dynamics of such system is much richer than that of the system with integer order. We demonstrate the appearance of multistability and a rotating wave when either the fractional derivative index or the coupling strength is increased, on the route from a stable steady-state regime to hyperchaos through a Hopf bifurcation and a cascade of torus bifurcations.(c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Discretization of forced Duffing system with fractional-order damping
    El-Sayed, Ahmedma
    El-Raheem, Zaki F. E.
    Salman, Sanaa M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [2] Dynamics of a ring of three unidirectionally coupled Duffing oscillators with time-dependent damping
    Barba-Franco, J. J.
    Gallegos, A.
    Jaimes-Reategui, R.
    Gerasimova, S. A.
    Pisarchik, A. N.
    EPL, 2021, 134 (03)
  • [3] Nonlinear dynamics of fractional order Duffing system
    Li, Zengshan
    Chen, Diyi
    Zhu, Jianwei
    Liu, Yongjian
    CHAOS SOLITONS & FRACTALS, 2015, 81 : 111 - 116
  • [4] Primary and subharmonic simultaneous resonance of fractional-order Duffing oscillator
    Shen, Yongjun
    Li, Hang
    Yang, Shaopu
    Peng, Mengfei
    Han, Yanjun
    NONLINEAR DYNAMICS, 2020, 102 (03) : 1485 - 1497
  • [5] Threshold for Chaos of a Duffing Oscillator with Fractional-Order Derivative
    Xing, Wuce
    Chen, Enli
    Chang, Yujian
    Wang, Meiqi
    SHOCK AND VIBRATION, 2019, 2019
  • [6] Discretization of forced Duffing system with fractional-order damping
    Ahmed MA El-Sayed
    Zaki FE El-Raheem
    Sanaa M Salman
    Advances in Difference Equations, 2014
  • [7] Undamped oscillations in fractional-order Duffing oscillator
    Rostami, Mohammad
    Haeri, Mohammad
    SIGNAL PROCESSING, 2015, 107 : 361 - 367
  • [8] Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection
    Du, Lin
    Zhao, Yunping
    Lei, Youming
    Hu, Jian
    Yue, Xiaole
    NONLINEAR DYNAMICS, 2018, 92 (04) : 1921 - 1933
  • [9] Design and Analysis of Fractional-order Oscillators Using Scilab
    Bingi, Kishore
    Ibrahim, Rosdiazli
    Karsiti, Mohd Noh
    Hassan, Sabo Miya
    Elamvazuthi, Irraivan
    Devan, Arun Mozhi
    2019 17TH IEEE STUDENT CONFERENCE ON RESEARCH AND DEVELOPMENT (SCORED), 2019, : 311 - 316
  • [10] Nonlinear dynamics and chaos in fractional-order neural networks
    Kaslik, Eva
    Sivasundaram, Seenith
    NEURAL NETWORKS, 2012, 32 : 245 - 256