Dynamics of a ring of three fractional-order Duffing oscillators

被引:17
作者
Barba-Franco, J. J. [1 ]
Gallegos, A. [1 ]
Jaimes-Reategui, R. [1 ]
Pisarchik, A. N. [2 ,3 ]
机构
[1] Univ Guadalajara, Ctr Univ Lagos, Dept Ciencias Exactas & Tecnol, Enr Diaz de Leon 1144, Lagos De Moreno, Jalisco, Mexico
[2] Univ Politecn Madrid, Ctr Tecnol Biomed, Campus Montegancedo, Madrid 28223, Spain
[3] Innopolis Univ, Univ Skaya Str 1, Innopolis 420500, Republic Of Tat, Russia
关键词
Duffing oscillator; Unidirectional coupling; Fractional-order differential equations; Multistability; Grundwall-Letnikov derivative; ROTATING WAVES; SYNCHRONIZATION; RESONANCE; CHAOS; MODEL;
D O I
10.1016/j.chaos.2021.111747
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the dynamics of three ring-coupled double-well Duffing oscillators modelled by fractional-order differential equations. The analysis of time series, Fourier spectra, phase portraits, Poincare sec-tions, and Lyapunov exponents using the fractional order and the coupling strength as control parameters, shows that the dynamics of such system is much richer than that of the system with integer order. We demonstrate the appearance of multistability and a rotating wave when either the fractional derivative index or the coupling strength is increased, on the route from a stable steady-state regime to hyperchaos through a Hopf bifurcation and a cascade of torus bifurcations.(c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 55 条
[1]   Analysis of a fractional SEIR model with treatment [J].
Almeida, Ricardo .
APPLIED MATHEMATICS LETTERS, 2018, 84 :56-62
[2]  
[Anonymous], 1918, ERZWUNGENE SCHWINGUN
[3]   On a fractional order Ebola epidemic model [J].
Area, Ivan ;
Batarfi, Hanan ;
Losada, Jorge ;
Nieto, Juan J. ;
Shammakh, Wafa ;
Torres, Angela .
ADVANCES IN DIFFERENCE EQUATIONS, 2015,
[4]   The fastest, simplified method of Lyapunov exponents spectrum estimation for continuous-time dynamical systems [J].
Balcerzak, Marek ;
Pikunov, Danylo ;
Dabrowski, Artur .
NONLINEAR DYNAMICS, 2018, 94 (04) :3053-3065
[5]   Dynamics of a ring of three unidirectionally coupled Duffing oscillators with time-dependent damping [J].
Barba-Franco, J. J. ;
Gallegos, A. ;
Jaimes-Reategui, R. ;
Gerasimova, S. A. ;
Pisarchik, A. N. .
EPL, 2021, 134 (03)
[6]  
Barba-Franco JJ, 2020, REV MEX FIS, V66, P440, DOI [10.31349/RevMexFis.66.440, 10.31349/revmexfis.66.440]
[7]   Stability of the 3-torus solution in a ring of coupled Duffing oscillators [J].
Borkowski, L. ;
Stefanski, A. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2020, 229 (12-13) :2249-2259
[8]   FFT Bifurcation Analysis of Routes to Chaos via Quasiperiodic Solutions [J].
Borkowski, L. ;
Stefanski, A. .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
[9]   Experimental observation of three-frequency quasiperiodic solution in a ring of unidirectionally coupled oscillators [J].
Borkowski, L. ;
Perlikowski, P. ;
Kapitaniak, T. ;
Stefanski, A. .
PHYSICAL REVIEW E, 2015, 91 (06)
[10]   Nonlinear Dynamics of Duffing System With Fractional Order Damping [J].
Cao, Junyi ;
Ma, Chengbin ;
Xie, Hang ;
Jiang, Zhuangde .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2010, 5 (04) :1-6