Au@Ag Nanoparticles: Halides Stabilize {100} Facets

被引:136
作者
Gomez-Grana, Sergio [1 ]
Goris, Bart [2 ]
Altantzis, Thomas [2 ]
Fernandez-Lopez, Cristina [1 ]
Carbo-Argibay, Enrique [1 ]
Guerrero-Martinez, Andres [1 ,3 ]
Almora-Barrios, Neyvis [4 ]
Lopez, Nuria [4 ]
Pastoriza-Santos, Isabel [1 ]
Perez-Juste, Jory [1 ]
Bals, Sara [2 ]
Van Tendeloo, Gustaaf [2 ]
Liz-Marzan, Luis M. [1 ,5 ,6 ]
机构
[1] Univ Vigo, Dept Quim Fis, Vigo 36310, Spain
[2] Univ Antwerp, EMAT, B-2020 Antwerp, Belgium
[3] Univ Complutense Madrid, Dept Phys Chem 1, E-28040 Madrid, Spain
[4] ICIQ, Inst Chem Res Catalonia, Tarragona 43007, Spain
[5] CIC BiomaGUNE, BioNanoPlasmon Lab, Donostia San Sebastian 20009, Spain
[6] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Spain
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2013年 / 4卷 / 13期
基金
欧洲研究理事会;
关键词
SILVER BROMIDE COMPLEX; CORE-SHELL NANOCUBES; GOLD NANORODS; CRYSTALLINE-STRUCTURE; SEEDED GROWTH; SHAPE; MECHANISM; EVOLUTION; ADLAYERS; PLASMONS;
D O I
10.1021/jz401269w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Seed-mediated growth is the most efficient methodology to control the size and shape of colloidal metal nanoparticles. In this process, the final nanocrystal shape is defined by the crystalline structure of the initial seed as well as by the presence of ligands and other additives that help to stabilize certain crystallographic facets. We analyze here the growth mechanism in aqueous solution of silver shells on presynthesized gold nanoparticles displaying various well-defined crystalline structures and morphologies. A thorough three-dimensional electron microscopy characterization of the morphology and internal structure of the resulting core-shell nanocrystals indicates that {100} facets are preferred for the outer silver shell, regardless of the morphology and crystallinity of the gold cores. These results are in agreement with theoretical analysis based on the relative surface energies of the exposed facets in the presence of halide ions.
引用
收藏
页码:2209 / 2216
页数:8
相关论文
共 43 条
  • [1] Light Concentration at the Nanometer Scale
    Alvarez-Puebla, Ramon
    Liz-Marzan, Luis M.
    Javier Garcia de Abajo, F.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (16): : 2428 - 2434
  • [2] Bamparis G. D., 2012, PHYS REV B, P86
  • [3] Borsook H, 1937, J BIOL CHEM, V117, P237
  • [4] Chemical sharpening of gold nanorods:: The rod-to-octahedron transition
    Carbo-Argibay, Enrique
    Rodriguez-Gonzalez, Benito
    Pacifico, Jessica
    Pastoriza-Santos, Isabel
    Perez-Juste, Jorge
    Liz-Marzan, Luis M.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (47) : 8983 - 8987
  • [5] The Crystalline Structure of Gold Nanorods Revisited: Evidence for Higher-Index Lateral Facets
    Carbo-Argibay, Enrique
    Rodriguez-Gonzalez, Benito
    Gomez-Grana, Sergio
    Guerrero-Martinez, Andres
    Pastoriza-Santos, Isabel
    Perez-Juste, Jorge
    Liz-Marzan, Luis M.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (49) : 9397 - 9400
  • [6] Modulation of Localized Surface Plasmons and SERS Response in Gold Dumbbells through Silver Coating
    Cardinal, M. Fernanda
    Rodriguez-Gonzalez, Benito
    Alvarez-Puebla, Ramon A.
    Perez-Juste, Jorge
    Liz-Marzan, Luis M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (23) : 10417 - 10423
  • [7] A Density Functional Theory study on gold cyanide interactions: The fundamentals of ore cleaning
    Gomez-Diaz, Jaime
    Honkala, Karoliina
    Lopez, Nuria
    [J]. SURFACE SCIENCE, 2010, 604 (19-20) : 1552 - 1557
  • [8] Synthesis of Au@Ag Core-Shell Nanocubes Containing Varying Shaped Cores and Their Localized Surface Plasmon Resonances
    Gong, Jianxiao
    Zhou, Fei
    Li, Zhiyuan
    Tang, Zhiyong
    [J]. LANGMUIR, 2012, 28 (24) : 8959 - 8964
  • [9] Goris B, 2012, NAT MATER, V11, P930, DOI [10.1038/NMAT3462, 10.1038/nmat3462]
  • [10] Fine-tuning the shape of gold nanorods
    Gou, LF
    Murphy, CJ
    [J]. CHEMISTRY OF MATERIALS, 2005, 17 (14) : 3668 - 3672